[1]朱文霖,刘华平,王博文,等.基于视-触跨模态感知的智能导盲系统[J].智能系统学报,2020,15(1):33-40.[doi:10.11992/tis.201908015]
ZHU Wenlin,LIU Huaping,WANG Bowen,et al.An intelligent blind guidance system based on visual-touch cross-modal perception[J].CAAI Transactions on Intelligent Systems,2020,15(1):33-40.[doi:10.11992/tis.201908015]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
15
期数:
2020年第1期
页码:
33-40
栏目:
学术论文—智能系统
出版日期:
2020-01-05
- Title:
-
An intelligent blind guidance system based on visual-touch cross-modal perception
- 作者:
-
朱文霖1, 刘华平2, 王博文1, 孙富春2
-
1. 河北工业大学 省部共建电工装备可靠性与智能化国家重点实验室, 天津 300130;
2. 清华大学 智能技术与系统国家重点实验室, 北京 100084
- Author(s):
-
ZHU Wenlin1, LIU Huaping2, WANG Bowen1, SUN Fuchun2
-
1. State Key Laboratory of Reliability and Intelligence of Electrical Equipment, Hebei University of Technology, Tianjin 300130, China;
2. State Key Lab. of Intelligent Technology and Systems, Tsinghua University, Beijing 100084, China
-
- 关键词:
-
盲人用户; 电子手杖; 跨模态技术; 触觉; 数据集; 深度学习; 计算机视觉; 生成对抗网络
- Keywords:
-
blind users; electronic cane; cross-modal technology; touch; data set; deep learning; computer vision; GANs
- 分类号:
-
TP391.4
- DOI:
-
10.11992/tis.201908015
- 摘要:
-
盲人活动援助是盲人日常生活的重要组成部分。这些技术大多用于帮助盲人导航和躲避障碍物,很少有研究将地面信息转换成一种给用户直观感受的触觉信息。为了满足上述需求,本文提出了一种可以提供触觉反馈的盲人辅助地面识别智能导盲杖系统。试图利用深度生成对抗训练的方法来产生振动触觉刺激,使用改进的DiscoGAN训练了我们的端到端生成网络。为了训练我们的网络,构建了视触跨模态数据集GroVib。通过上机实验和实物实验来评估方案的可行性,通过上机实验结果表明参与者通过触觉识别地面的准确率为84.7%,触觉的平均真实感受得分为71.3,在真实场景实验中,参与者只需平均3.35次尝试就可以根据触觉反馈来识别地面。
- Abstract:
-
Blind mobility aid is a primary part of the daily life for blind people. Most of these technologies are used to help them navigate and avoid obstacles, and few researches have been done to convert ground information into tactile sensation that gives the user an intuitive feeling. To meet the above requirements, we proposed an intelligent guided rod system, which can provide tactile feedback to assist the blind to recognize ground information. We attempted to generate the vibrotactile stimuli leveraging the power of deep generative adversarial training. Specifically, we used an improved DiscoGAN training an end-to-end generated network. To train the network, we also built GroVib, a visual touch cross-modal dataset. We set up computer experiments and physical experiments to evaluate the feasibility of the scheme. The results of computer experiments showed that the accuracy rate of the participants in recognizing the ground by tactile sense was 84.7%, and the average real feeling score of tactile sense was 71.3. In real scene experiments, the participants needed only 3.25 times of attempts on average to recognize the ground based on tactile feedback.
备注/Memo
收稿日期:2019-08-21。
基金项目:国家自然科学基金重点项目(U1613212);河北省自然科学基金项目(E2017202035)
作者简介:朱文霖,男,1994年生,硕士研究生,主要研究方向为新型磁性材料与器件、触觉交互;刘华平,男,1976年生,副教授,博士生导师,主要研究机器人感知、学习与控制,多模态信息融合。利用稀疏编码建立了机器人多模态融合感知与学习框架,在此基础上结合机器人的光学、红外、深度和触觉等不同模态信息开发了一系列多模态稀疏编码方法,并在移动机器人、灵巧机械臂等机器人平台上开展多模态感知融合的方法验证与应用。发表学术论文10余篇;王博文,男,1956年生,教授,博士生导师,主要研究方向为磁致伸缩材料与器件、振动发电技术、磁特性测试技术。承担国家自然科学基金等项目8项(其中主持5项)、省部级科研项目10项(其中主持8项);河北省科学技术突出贡献奖和省科技进步三等奖各1项。获专利授权6项;出版专著2部,发表学术论文200多篇
通讯作者:刘华平.E-mail:hpliu@tsinghua.edu.cn
更新日期/Last Update:
1900-01-01