[1]陈立潮,解丹,曹建芳,等.改进光流法和GMM融合的车辆实时检测算法研究[J].智能系统学报,2021,16(2):271-278.[doi:10.11992/tis.201907051]
CHEN Lichao,XIE Dan,CAO Jianfang,et al.Research on vehicle real-time detection algorithm based on improved optical flow method and GMM[J].CAAI Transactions on Intelligent Systems,2021,16(2):271-278.[doi:10.11992/tis.201907051]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
16
期数:
2021年第2期
页码:
271-278
栏目:
学术论文—机器感知与模式识别
出版日期:
2021-03-05
- Title:
-
Research on vehicle real-time detection algorithm based on improved optical flow method and GMM
- 作者:
-
陈立潮1, 解丹1, 曹建芳1, 张睿1
-
1. 太原科技大学 计算机科学与技术学院,山西 太原 030024;
2. 忻州师范学院 计算机科学与技术系,山西 忻州 034000
- Author(s):
-
CHEN Lichao1, XIE Dan1, CAO Jianfang1, ZHANG Rui1
-
1. School of Computer Science and Technology, Taiyuan University of Science and Technology, Taiyuan 030024, China;
2. Department of Computer Science and Technology, Xinzhou Teachers University, Xinzhou 034000, China
-
- 关键词:
-
IOFGMM检测算法; 光流法; 高斯混合背景模型; 信息融合; 实时检测; 梯度; 光照; 约束
- Keywords:
-
IOFGMM detection algorithm; optical flow method; gaussian mixture background model; Information fusion; real-time detection; gradient; illumination; constraint
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.201907051
- 摘要:
-
针对传统光流算法受光照影响较大和在不同场景中检测效果差别较大等问题,提出一种改进的光流法与混合高斯背景模型相融合的运动车辆实时检测算法(improved optical flow and gaussian mixture model,IOFGMM)。首先,在光流算法中加入限制条件使得不同梯度点处采用不同约束;其次,融合高斯混合背景模型(gaussian mixture model,GMM);最后,采用提出的融合算法比较目标框的数量和目标框之间的重叠面积,从而在监控视频中显示出融合后的车辆检测信息。实验结果表明:该算法在3种不同场景视频上的检测效果达到了84.80%的平均准确率,84.79%的平均召回率以及84.63%的平均F1值。与经典的光流法和高斯混合背景模型及基于这两种理论的算法相比,IOFGMM算法的各项指标平均有37%的提高,具有良好的检测效果。
- Abstract:
-
To solve the problem of the optical flow algorithm being greatly affected by illumination and the highly variable detection effect in different scenes, in this paper, we propose an improved optical flow and Gaussian mixture model (IOFGMM) algorithm for the real-time detection of moving vehicles. First, a restriction is added to the optical flow algorithm whereby different constraints are used at different points. Then, a Gaussian mixture model (GMM) is fused. Finally, the number of target boxes and the area in which the target boxes overlap are compared by the proposed fusion algorithm. The vehicle detection information after fusion is displayed in the surveillance video. Experimental results show that the detection performance of the IOFGMM algorithm achieved an average accuracy rate of 84.80%, an average recall rate of 84.79%, and an average F1 value of 84.63% for videos of three different scenes. Compared with the classical optical flow method, the GMM, and the algorithm based on these two theories, the IOFGMM algorithm shows an average improvement of 37% in each metric. Therefore, we can conclude that the IOFGMM algorithm has good detection performance.
备注/Memo
收稿日期:2019-07-29。
基金项目:山西省自然科学基金项目(201801D221179,201701D121059);太原科技大学校博士科研启动基金项目(20162036);山西省高等学校人文社会科学重点研究基地项目(20190130);忻州市平台和人才专项(20180601)
作者简介:陈立潮,教授,博士,中国计算机学会高级会员,主要研究方向为智能信息处理。主持省部级科技项目20余项、获山西省科学技术奖二等奖2项。发表学术论文120余篇;解丹,硕士研究生,中国计算机学会会员,主要研究方向为图像处理与模式识别;曹建芳,教授,博士,中国计算机学会高级会员,主要研究方向为数字图像理解、大数据技术。近5年来,主持省部级项目11项,获山西省高等学校科学研究优秀成果(科学技术)自然科学奖二等奖1项、山西省优秀学术论文二等奖2项、忻州市科学技术奖(自然科学类)二等奖2项、三等奖1项。发表学术论文30余篇,出版学术专著2部
通讯作者:曹建芳.E-mail:kcxdj122@126.com
更新日期/Last Update:
2021-04-25