[1]孟祥福,齐雪月,张全贵,等.用户-兴趣点耦合关系的兴趣点推荐方法[J].智能系统学报,2021,16(2):228-236.[doi:10.11992/tis.201907034]
 MENG Xiangfu,QI Xueyue,ZHANG Quangui,et al.A POI recommendation approach based on user-POI coupling relationships[J].CAAI Transactions on Intelligent Systems,2021,16(2):228-236.[doi:10.11992/tis.201907034]
点击复制

用户-兴趣点耦合关系的兴趣点推荐方法

参考文献/References:
[1] WANG Weiqing, YIN Hongzhi, CHEN Ling, et al. Geo-SAGE:a geographical sparse additive generative model for spatial item recommendation[C]//Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Sydney, Australia, 2015:1255-1264.
[2] YIN Hongzhi, WANG Weiqing, WANG Hao, et al. Spatial-aware hierarchical collaborative deep learning for POI recommendation[J]. IEEE transactions on knowledge and data engineering, 2017, 29(11):2537-2551.
[3] LI Huayu, GE Yong, HONG Richang, et al. Point-of-Interest recommendations:learning potential check-ins from friends[C]//Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Francisco, California, America, 2016:975-984.
[4] HE Xiangnan, LIAO Lizi, ZHANG Hanwang, et al. Neural collaborative filtering[C]//Proceedings of the 26th International Conference on World Wide Web. Perth, Australia, 2017:173-182.
[5] FENG Shanshan, LI Xutao, ZENG Yifeng, et al. Personalized ranking metric embedding for next new POI recommendation[C]//Proceedings of the 24th International Conference on Artificial Intelligence. Buenos Aires, Argentina, 2015:2069-2075.
[6] CHENG Chen, YANG Haiqin, LYU M R, et al. Where you like to go next:successive Point-of-Interest recommendation[C]//Proceedings of the 23th International Joint Conference on Artificial Intelligence. Beijing, China, 2013:2605-2611.
[7] YU Zhiwen, XU Huang, YANG Zhe, et al. Personalized travel package with multi-point-of-interest recommendation based on crowdsourced user footprints[J]. IEEE transactions on human-machine systems, 2016, 46(1):151-158.
[8] LIAO Jianxin, LIU Tongcun, LIU Meilian, et al. Multi-context integrated deep neural network model for next location prediction[J]. IEEE access, 2018, 6:21980-21990.
[9] LONG Yan, ZHAO Pengpeng, SHENG V S, et al. Social personalized ranking embedding for next POI recommendation[C]//Proceedings of the 18th International Conference on Web Information Systems Engineering. Pushchino, Russia, 2017:91-105.
[10] YE Jihang, ZHU Zhe, CHENG Hong. What’s your next move:user activity prediction in location-based social networks[C]//Proceedings of the 2013 SIAM International Conference on Data Mining. Austin, USA, 2013:171-179.
[11] HE Jing, LI Xin, LIAO Lejian, et al. Inferring a personalized next Point-of-Interest recommendation model with latent behavior patterns[C]//Proceedings of the Conference on Artificial Intelligence. Phoenix, America, 2016:137-143.
[12] CUI Qiang, TANG Yuyuan, WU Shu, et al. Distance2Pre:personalized spatial preference for next point-of-interest prediction[M]//YANG Qiang, ZHOU Zhihua, GONG Zhiguo, et al. Advances in Knowledge Discovery and Data Mining. Cham:Springer, 2019:289-301.
[13] LOU Peiliang, ZHAO Guoshuai, QIAN Xueming, et al. Schedule a rich sentimental travel via sentimental POI mining and recommendation[C]//Proceedings of 2016 IEEE Second International Conference on Multimedia Big Data. Taipei, China, 2016:33-40.
[14] ZHANG Chenyi, LIANG Hongwei, WANG Ke, et al. Personalized trip recommendation with POI availability and uncertain traveling time[C]//Proceedings of the 24th ACM International on Conference on Information and Knowledge Management. Melbourne, Australia, 2015:911-920.
[15] LI Huayu, HONG Richang, WU Zhiang, et al. A spatial-temporal probabilistic matrix factorization model for Point-of-Interest recommendation[C]//Proceedings of the 2016 SIAM International Conference on Data Mining. Miami, USA, 2016:117-125.
[16] ZHANG Jiadong, CHOW C Y. GeoSoCa:exploiting geographical, social and categorical correlations for Point-of-Interest recommendations[C]//Proceedings of the 38th International ACM SIGIR Conference on Research and Development in Information Retrieval. Santiago, Chile, 2015:443-452.
[17] WANG Xiang, HE Xiangnan, WANG Meng, et al. Neural graph collaborative filtering[C]//Proceedings of the 42nd International ACM SIGIR Conference on Research and Development in Information Retrieval. Paris, France, 2019:165-174.
[18] ZHANG Jiani, SHI Xingjian, ZHAO Shenglin, et al. STAR-GCN:stacked and reconstructed graph convolutional networks for recommender systems[C]//Proceedings of the Twenty-Eighth International Joint Conference on Artificial Intelligence. Macao, China, 2019:4264-4270.
[19] CHENG Chen, YANG Haiqin, KING I, et al. Fused matrix factorization with geographical and social influence in location-based social networks[C]//Proceedings of the 26th AAAI Conference on Artificial Intelligence. Toronto, Canada, 2012:17-23.
[20] LIAN Defu, ZHAO Cong, XIE Xing, et al. GeoMF:joint geographical modeling and matrix factorization for point-of-interest recommendation[C]//Proceedings of the 20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. New York, USA, 2014:831-840.
[21] XING Shuning, LIU Fangai, ZHAO Xiaohui, et al. Points-of-interest recommendation based on convolution matrix factorization[J]. Applied intelligence, 2018, 48(8):2458-2469.
[22] LIU Ming, DING Yukang, XIA Min, et al. STGAN:a unified selective transfer network for arbitrary image attribute editing[C]//Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition. Long Beach, America, 2019:3668-3677.
[23] ATHIWARATKUN B, WILSON A, ANANDKUMAR A. Probabilistic FastText for multi-sense word embeddings[C]//Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics. Melbourne, Australia, 2018:1-11.
[24] HORNIK K, STINCHCOMBE M, WHITE H. Multilayer feedforward networks are universal approximators[J]. Neural networks, 1989, 2(5):359-366.
[25] ZHANG Quangui, CAO Longbing, ZHU Chengzhang, at al. CoupledCF:learning explicit and implicit user-item couplings in recommendation for deep collaborative filtering[C]//Proceedings of the 27th International Joint Conference on Artificial Intelligence. Stockholm, Sweden, 2018:3662-3668.
[26] MIKOLOV T, CHEN Kai, CORRADO G, et al. Efficient estimation of word representations in vector space[C]//Proceedings of the 1st International Conference on Learning Representations. Scottsdale, USA, 2013:1301-3781.
[27] LIU Yiding, TUAN-ANH P, CONG Gao, et al. An experimental evaluation of Point-of-Interest recommendation in location-based social networks[J]. Proceedings of the VLDB endowment, 2017, 10(10):1010-1021.
[28] RENDLE S, FREUDENTHALER C, GANTNER Z, et al. BPR:Bayesian personalized ranking from implicit feedback[C]//Proceedings of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence. Montreal, Canada, 2009:452-461.
相似文献/References:
[1]马甲林,张永军,王志坚.基于概念簇的多主题提取算法[J].智能系统学报,2015,10(2):261.[doi:10.3969/j.issn.1673-4785.201405066]
 MA Jialin,ZHANG Yongjun,WANG Zhijian.Multi-topic extraction algorithm based on concept clusters[J].CAAI Transactions on Intelligent Systems,2015,10():261.[doi:10.3969/j.issn.1673-4785.201405066]
[2]涂飞.多特征融合的兴趣点推荐算法[J].智能系统学报,2019,14(4):779.[doi:10.11992/tis.201801048]
 TU Fei.A point of interest recommendation algorithm based on multi-feature fusion[J].CAAI Transactions on Intelligent Systems,2019,14():779.[doi:10.11992/tis.201801048]
[3]孙林,梁娜,徐久成.基于邻域互信息与K-means特征聚类的特征选择[J].智能系统学报,2024,19(4):983.[doi:10.11992/tis.202208012]
 SUN Lin,LIANG Na,XU Jiucheng.Feature selection using neighborhood mutual information and feature clustering with K-means[J].CAAI Transactions on Intelligent Systems,2024,19():983.[doi:10.11992/tis.202208012]

备注/Memo

收稿日期:2019-07-18。
基金项目:国家自然科学基金面上项目(61772249)
作者简介:孟祥福,教授,博士生导师,博士,主要研究方向为用户行为分析、Web数据库top-k查询、非独立同分布学习和空间数据管理。发表学术论文30余篇;齐雪月,硕士研究生,主要研究方向为兴趣点推荐;张全贵,副教授,博士,主要研究方向为推荐系统、深度学习
通讯作者:孟祥福.E-mail:marxi@126.com

更新日期/Last Update: 2021-04-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com