[1]高媛,陈向坚,王平心,等.面向一致性样本的属性约简[J].智能系统学报,2019,14(6):1170-1178.[doi:10.11992/tis.201905051]
 GAO Yuan,CHEN Xiangjian,WANG Pingxin,et al.Attribute reduction over consistent samples[J].CAAI Transactions on Intelligent Systems,2019,14(6):1170-1178.[doi:10.11992/tis.201905051]
点击复制

面向一致性样本的属性约简

参考文献/References:
[1] PAWLAK Z. Rough sets:Theoretical aspects of reasoning about data[M]. Dordrecht:Kluwer Academic Publishers, 1991.
[2] PAWLAK Z, GRZYMALA-BUSSE J, SLOWINSKI R, et al. Rough sets[J]. Communications of the ACM, 1995, 38(11):88-95.
[3] CHEN Hongmei, LI Tianrui, LUO Chuan, et al. A decision-theoretic rough set approach for dynamic data mining[J]. IEEE transactions on fuzzy systems, 2015, 23(6):1958-1970.
[4] WANG Changzhong, HU Qinghua, WANG Xizhao, et al. Feature selection based on neighborhood discrimination index[J]. IEEE transactions on neural networks and learning systems, 2018, 29(7):2986-2999.
[5] HU Qinghua, YU Daren, XIE Zongxia, et al. EROS:Ensemble rough subspaces[J]. Pattern recognition, 2007, 40(12):3728-3739.
[6] JIA Xiuyi, SHANG Lin, ZHOU Bing, et al. Generalized attribute reduct in rough set theory[J]. Knowledge-based systems, 2016, 91:204-218.
[7] YANG Xibei, QI Yunsong, SONG Xiaoning, et al. Test cost sensitive multigranulation rough set:model and minimal cost selection[J]. Information sciences, 2013, 250:184-199.
[8] CHEN Degang, YANG Yanyan, DONG Ze. An incremental algorithm for attribute reduction with variable precision rough sets[J]. Applied soft computing, 2016, 45:129-149.
[9] YANG Xibei, LIANG Shaochen, YU Hualong, et al. Pseudo-label neighborhood rough set:measures and attribute reductions[J]. International journal of approximate reasoning, 2019, 105:112-129.
[10] FERONE A. Feature selection based on composition of rough sets induced by feature granulation[J]. International journal of approximate reasoning, 2018, 101:276-292.
[11] HART P. The condensed nearest neighbor rule (Corresp.)[J]. IEEE transactions on information theor, 1968, 14(3):515-516.
[12] GATES G. The reduced nearest neighbor rule (Corresp.)[J]. IEEE transactions on information theory, 1972, 18(3):431-433.
[13] TOMEK I. Two modifications of CNN[J]. IEEE transactions on systems, man, and cybernetics, 1976, SMC-6(11):769-772.
[14] ANGIULLI F. Fast nearest neighbor condensation for large data sets classification[J]. IEEE transactions on knowledge and data engineering, 2007, 19(11):1450-1464.
[15] 王熙照, 王婷婷, 翟俊海. 基于样例选取的属性约简算法[J]. 计算机研究与发展, 2012, 49(11):2305-2310 WANG Xizhao, WANG Tingting, ZHAI Junhai. An attribute reduction algorithm based on instance selection[J]. Journal of computer research and development, 2012, 49(11):2305-2310
[16] ZHAI Junhai, WANG Xizhao, PANG Xiaohe. Voting-based instance selection from large data sets with mapreduce and random weight networks[J]. Information sciences, 2016, 367-368:1066-1077.
[17] ZHAI Junhai, LI Ta, WANG Xizhao. A cross-selection instance algorithm[J]. Journal of intelligent and fuzzy systems, 2016, 30(2):717-728.
[18] 杨习贝, 颜旭, 徐苏平, 等. 基于样本选择的启发式属性约简方法研究[J]. 计算机科学, 2016, 43(1):40-43 YANG Xibei, YAN Xu, XU Suping, et al. New heuristic attribute reduction algorithm based on sample selection[J]. Computer science, 2016, 43(1):40-43
[19] XU Suping, YANG Xibei, YU Hualong, et al. Multi-label learning with label-specific feature reduction[J]. Knowledge-based systems, 2016, 104:52-61.
[20] GAO Yuan, CHEN Xiangjian, YANG Xibei, et al. Neighborhood attribute reduction:a multicriterion strategy based on sample selection[J]. Information, 2018, 9(11):282.
[21] LIU Keyu, YANG Xibei, YU Hualong, et al. Rough set based semi-supervised feature selection via ensemble selector[J]. Knowledge-based systems, 2019, 165:282-296.
[22] DAI Jianhua, WANG Wentao, XU Qing, et al. Uncertainty measurement for interval-valued decision systems based on extended conditional entropy[J]. Knowledge-based systems, 2012, 27:443-450.
[23] ZHANG Xiao, MEI Changlin, CHEN Degang, et al. Feature selection in mixed data:a method using a novel fuzzy rough set-based information entropy[J]. Pattern recognition, 2016, 56:1-15.
[24] LIN Jianhua. Divergence measures based on the Shannon entropy[J]. IEEE transactions on information theory, 1991, 37(1):145-151.
[25] HU Qinghua, CHE Xunjian, ZHANG Lei, et al. Rank entropy-based decision trees for monotonic classification[J]. IEEE transactions on knowledge and data engineering, 2012, 24(11):2052-2064.
[26] YANG Xibei, YAO Yiyu. Ensemble selector for attribute reduction[J]. Applied soft computing, 2018, 70:1-11.
[27] LI Jingzheng, YANG Xibei, SONG Xiaoning, et al. Neighborhood attribute reduction:a multi-criterion approach[J]. International journal of machine learning and cybernetics, 2019, 10(4):731-742.
[28] HU Qinghua, YU Daren, XIE Zongxia. Neighborhood classifiers[J]. Expert systems with applications, 2008, 34(2):866-876.
[29] WANG Rui, LI Wei, LI Rui, et al. Automatic blur type classification via ensemble SVM[J]. Signal processing:image communication, 2019, 71:24-35.
[30] CHEN Degang, ZHAO Suyun. Local reduction of decision system with fuzzy rough sets[J]. Fuzzy sets and systems, 2010, 161(13):1871-1883.
[31] 孟军, 张晶, 姜丁菱, 等. 结合近邻传播聚类的选择性集成分类方法[J]. 计算机研究与发展, 2018, 55(5):986-993 MENG Jun, ZHANG Jing, JIANG Dingling, et al. Selective ensemble classification integrated with affinity propagation clustering[J]. Journal of computer research and development, 2018, 55(5):986-993
相似文献/References:
[1]伞 冶,叶玉玲.粗糙集理论及其在智能系统中的应用[J].智能系统学报,2007,2(2):40.
 SAN Ye,YE Yu-ling.Rough set theory and its application in the intelligent systems[J].CAAI Transactions on Intelligent Systems,2007,2():40.
[2]马胜蓝,叶东毅.一种带禁忌搜索的粒子并行子群最小约简算法[J].智能系统学报,2011,6(2):132.
 MA Shenglan,YE Dongyi.A minimum reduction algorithm based on parallel particle subswarm optimization with tabu search capability[J].CAAI Transactions on Intelligent Systems,2011,6():132.
[3]杨成东,邓廷权.综合属性选择和删除的属性约简方法[J].智能系统学报,2013,8(2):183.[doi:10.3969/j.issn.1673-4785.201209056]
 YANG Chengdong,DENG Tingquan.An approach to attribute reduction combining attribute selection and deletion[J].CAAI Transactions on Intelligent Systems,2013,8():183.[doi:10.3969/j.issn.1673-4785.201209056]
[4]乔丽娟,徐章艳,谢小军,等.基于知识粒度的不完备决策表的属性约简算法[J].智能系统学报,2016,11(1):129.[doi:10.11992/tis.201506029]
 QIAO Lijuan,XU Zhangyan,XIE Xiaojun,et al.Efficient attribute reduction algorithm for an incomplete decision table based on knowledge granulation[J].CAAI Transactions on Intelligent Systems,2016,11():129.[doi:10.11992/tis.201506029]
[5]鞠恒荣,马兴斌,杨习贝,等.不完备信息系统中测试代价敏感的可变精度分类粗糙集[J].智能系统学报,2014,9(2):219.[doi:10.3969/j.issn.1673-4785.201307010]
 JU Hengrong,MA Xingbin,YANG Xibei,et al.Test-cost-sensitive based variable precision classification rough set in incomplete information system[J].CAAI Transactions on Intelligent Systems,2014,9():219.[doi:10.3969/j.issn.1673-4785.201307010]
[6]韦碧鹏,吕跃进,李金海.α优势关系下粗糙集模型的属性约简[J].智能系统学报,2014,9(2):251.[doi:10.3969/j.issn.1673-4785.201307012]
 WEI Bipeng,Lü Yuejin,LI Jinhai.Attribute reduction based on the rough set model under α dominance relation[J].CAAI Transactions on Intelligent Systems,2014,9():251.[doi:10.3969/j.issn.1673-4785.201307012]
[7]钱进,朱亚炎.面向成组对象集的增量式属性约简算法[J].智能系统学报,2016,11(4):496.[doi:10.11992/tis.201606005]
 QIAN Jin,ZHU Yayan.An incremental attribute reduction algorithm for group objects[J].CAAI Transactions on Intelligent Systems,2016,11():496.[doi:10.11992/tis.201606005]
[8]冯丹,黄洋,石云鹏,等.连续型数据的辨识矩阵属性约简方法[J].智能系统学报,2017,12(3):371.[doi:10.11992/tis.201704032]
 FENG Dan,HUANG Yang,SHI Yunpeng,et al.A discernibility matrix-based attribute reduction for continuous data[J].CAAI Transactions on Intelligent Systems,2017,12():371.[doi:10.11992/tis.201704032]
[9]高学义,张楠,童向荣,等.广义分布保持属性约简研究[J].智能系统学报,2017,12(3):377.[doi:10.11992/tis.201704025]
 GAO Xueyi,ZHANG Nan,TONG Xiangrong,et al.Research on attribute reduction using generalized distribution preservation[J].CAAI Transactions on Intelligent Systems,2017,12():377.[doi:10.11992/tis.201704025]
[10]胡敏杰,林耀进,杨红和,等.基于特征相关的谱特征选择算法[J].智能系统学报,2017,12(4):519.[doi:10.11992/tis.201609008]
 HU Minjie,LIN Yaojin,YANG Honghe,et al.Spectral feature selection based on feature correlation[J].CAAI Transactions on Intelligent Systems,2017,12():519.[doi:10.11992/tis.201609008]

备注/Memo

收稿日期:2019-05-27。
基金项目:国家自然科学基金项目(61572242,61503160);江苏省研究生科研创新计划项目(KYCX19_1697).
作者简介:高媛,女,1994年生,硕士研究生,主要研究方向为粗糙集理论、机器学习;陈向坚,女,1983年生,副教授,博士,主要研究方向为模糊神经网络与智能控制。主持国家自然科学基金项目1项,发表学术论文20余篇;王平心,男,1980年生,副教授,博士,主要研究方向为矩阵分析与粒计算。主持国家自然科学基金项目1项,发表学术论文30余篇。
通讯作者:杨习贝.E-mail:jsjxy_yxb@just.edu.cn

更新日期/Last Update: 2019-12-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com