[1]程康明,熊伟丽.一种自训练框架下的三优选半监督回归算法[J].智能系统学报,2020,15(3):568-577.[doi:10.11992/tis.201905033]
 CHENG Kangming,XIONG Weili.Three-optimal semi-supervised regression algorithm under self-training framework[J].CAAI Transactions on Intelligent Systems,2020,15(3):568-577.[doi:10.11992/tis.201905033]
点击复制

一种自训练框架下的三优选半监督回归算法

参考文献/References:
[1] SHAHSHAHANI B M, LANDGREBE D A. The effect of unlabeled samples in reducing the small sample size problem and mitigating the Hughes phenomenon[J]. IEEE transactions on geoscience and remote sensing, 1994, 32(5): 1087-1095.
[2] LIU Huizeng, SHI Tiezhu, CHEN Yiyun, et al. Improving spectral estimation of soil organic carbon content through semi-supervised regression[J]. Remote sensing, 2017, 9(1): 29.
[3] 姜婷, 袭肖明, 岳厚光. 基于分布先验的半监督FCM的肺结节分类[J]. 智能系统学报, 2017, 12(5): 729-734
JIANG Ting, XI Xiaoming, YUE Houguang. Classification of pulmonary nodules by semi-supervised FCM based on prior distribution[J]. CAAI transactions on intelligent systems, 2017, 12(5): 729-734
[4] 刘杨磊, 梁吉业, 高嘉伟, 等. 基于Tri-training的半监督多标记学习算法[J]. 智能系统学报, 2013, 8(5): 439-445
LIU Yanglei, LIANG Jiye, GAO Jiawei, et al. Semi-supervised multi-label learning algorithm based on Tri-training[J]. CAAI transactions on intelligent systems, 2013, 8(5): 439-445
[5] 徐蓉, 姜峰, 姚鸿勋. 流形学习概述[J]. 智能系统学报, 2006, 1(1): 44-51
XU Rong, JIANG Feng, YAO Hongxun. Overview of manifold learning[J]. CAAI transactions on intelligent systems, 2006, 1(1): 44-51
[6] LIN Tong, ZHA Hongbin. Riemannian manifold learning[J]. IEEE transactions on pattern analysis and machine intelligence, 2008, 30(5): 796-809.
[7] 赵立杰, 王海龙, 陈斌. 基于流形正则化半监督学习的污水处理操作工况识别方法[J]. 化工学报, 2016, 67(6): 2462-2468
ZHAO Lijie, WANG Hailong, CHEN Bin. Identification of wastewater operational conditions based on manifold regularization semi-supervised learning[J]. CIESC journal, 2016, 67(6): 2462-2468
[8] 杜永贵, 李思思, 阎高伟, 等. 基于流形正则化域适应湿式球磨机负荷参数软测量[J]. 化工学报, 2018, 69(3): 1244-1251
DU Yonggui, LI Sisi, YAN Gaowei, et al. Soft sensor of wet ball mill load parameter based on domain adaptation with manifold regularization[J]. CIESC journal, 2018, 69(3): 1244-1251
[9] 陈定三, 杨慧中. 基于局部重构融合流形聚类的多模型软测量建模[J]. 化工学报, 2011, 62(8): 2281-2286
CHEN Dingsan, YANG Huizhong. Multiple model soft sensor based on local reconstruction and fusion manifold clustering[J]. CIESC journal, 2011, 62(8): 2281-2286
[10] ZHOU Zhihua, LI Ming. Semi-supervised regression with co-training[C]//Proceedings of the 19th International Joint Conference on Artificial Intelligence. Scotland, UK, 2005: 908-913.
[11] CALDAS W L, GOMES J P P, MESQUITA D P P. Fast Co-MLM: an efficient semi-supervised co-training method based on the minimal learning machine[J]. New generation computing, 2018, 36(6): 41-58.
[12] CHEN Minmin, WEINBERGER K Q, BLITZER J C. Co-training for domain adaptation[C]//Proceedings of the 24th International Conference on Neural Information Processing Systems. Granada, Spain, 2011: 2456-2464.
[13] BLUM A, MITCHELL T. Combining labeled and unlabeled data with co-training[C]//Proceedings of the 11th Annual Conference on Computational Learning Theory. Wisconsin, USA, 1998: 92-100.
[14] 程玉虎, 冀杰, 王雪松. 基于Help-Training的半监督支持向量回归[J]. 控制与决策, 2012, 27(2): 205-210
CHENG Yuhu, JI Jie, WANG Xuesong, et al. Semi-supervised support vector regression based on help-training[J]. Control and decision, 2012, 27(2): 205-210
[15] 盛高斌, 姚明海. 基于半监督回归的选择性集成算法[J]. 计算机仿真, 2009, 26(10): 198-201
SHENG Gaobin, YAO Minghai. An ensemble selection algorithm based on semi-supervised regression[J]. Computer simulation, 2009, 26(10): 198-201
[16] BESEMER J, LOMSADZE A, BORODOVSKY M. GeneMarkS: a self-training method for prediction of gene starts in microbial genomes. Implications for finding sequence motifs in regulatory regions[J]. Nucleic acids research, 2001, 29(12): 2607-2618.
[17] LI Fan, CLAUSI D A, XU Linlin, et al. ST-IRGS: a region-based self-training algorithm applied to hyperspectral image classification and segmentation[J]. IEEE transactions on geoscience and remote sensing, 2018, 56(1): 3-16.
[18] SALI L, DELSANTO S, SACCHETTO D, et al. Computer-based self-training for CT colonography with and without CAD[J]. European radiology, 2018, 28(11): 4783-4791.
[19] 张博锋, 白冰, 苏金树. 基于自训练EM算法的半监督文本分类[J]. 国防科技大学学报, 2007, 29(6): 65-69
ZHANG Bofeng, BAI Bing, SU Jinshu. Semi-supervised text classification based on self-training EM algorithm[J]. Journal of national university of defense technology, 2007, 29(6): 65-69
[20] LI Yuanqing, GUAN Cuntai, LI Huiqi, et al. A self-training semi-supervised SVM algorithm and its application in an EEG-based brain computer interface speller system[J]. Pattern recognition letters, 2008, 29(9): 1285-1294.
[21] 仝小敏, 吉祥. 基于自训练的回归算法[J]. 中国电子科学研究院学报, 2017, 12(5): 498-502
TONG Xiaomin, JI Xiang. Regression algorithm based on self training[J]. Journal of China academy of electronics and information technology, 2017, 12(5): 498-502
[22] KUMAR S, HEGDE R M, TRIGONI N. Gaussian process regression for fingerprinting based localization[J]. Ad hoc networks, 2016, 51: 1-10.
[23] 熊伟丽, 李妍君, 姚乐, 等. 一种动态校正的AGMM-GPR多模型软测量建模方法[J]. 大连理工大学学报, 2016, 56(1): 77-85
XIONG Weili, LI Yanjun, YAO Le, et al. A dynamically corrected AGMM-GPR multi-model soft sensor modeling method[J]. Journal of Dalian University of Technology, 2016, 56(1): 77-85
[24] ZHOU Zhihua, LI Ming. Semisupervised regression with cotraining-style algorithms[J]. IEEE transactions on knowledge and data engineering, 2007, 19(11): 1479-1493.
[25] TANHA J, VAN SOMEREN M, AFSARMANESH H. Semi-supervised self-training for decision tree classifiers[J]. International journal of machine learning and cybernetics, 2017, 8(1): 355-370.
[26] LAW M T, YU Yaoliang, CORD M, et al. Closed-form training of mahalanobis distance for supervised clustering[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016: 3909-3917.
[27] KNORR E M, NG R T. A unified notion of outliers: properties and computation[C]//Proceedings of the 3rd International Conference on Knowledge Discovery and Data Mining. Newport Beach, USA, 1997: 219-222.
[28] 阮宏镁, 田学民, 王平. 基于联合互信息的动态软测量方法[J]. 化工学报, 2014, 65(11): 4497-4502
RUAN Hongmei, TIAN Xuemin, WANG Ping. Dynamic soft sensor method based on joint mutual information[J]. CIESC journal, 2014, 65(11): 4497-4502
[29] FORTUNA L, GRAZIANI S, RIZZO A, et al. Soft sensors for monitoring and control of industrial processes[M]. London: Springer, 2007: 229-231.
[30] 程康明, 熊伟丽. 一种双优选的半监督回归算法[J]. 智能系统学报, 2019, 14(4): 689-696
CHENG Kangming, XIONG Weili. A dual-optimal semi-supervised regression algorithm[J]. CAAI transactions on intelligent systems, 2019, 14(4): 689-696
相似文献/References:
[1]程康明,熊伟丽.一种双优选的半监督回归算法[J].智能系统学报,2019,14(4):689.[doi:10.11992/tis.201805010]
 CHENG Kangming,XIONG Weili.A dual-optimal semi-supervised regression algorithm[J].CAAI Transactions on Intelligent Systems,2019,14():689.[doi:10.11992/tis.201805010]

备注/Memo

收稿日期:2019-05-15。
基金项目:国家自然科学基金项目(61773182);江苏省自然科学基金项目(BK20170198)
作者简介:程康明,硕士研究生,主要研究方向为工业过程建模、机器学习和大数据分析;熊伟丽,教授,博士生导师,主要研究方向为复杂工业过程建模及优化、智能优化算法及应用。主持国家自然科学基金面上项目、江苏省产学研等纵向项目8项;参与国家863计划、重点研发计划等多项。发 表学术论文60余篇.
通讯作者:熊伟丽.E-mail:greenpre@163.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com