[1]李景灿,丁世飞.基于人工鱼群算法的孪生支持向量机[J].智能系统学报,2019,14(6):1121-1126.[doi:10.11992/tis.201905025]
 LI Jingcan,DING Shifei.Twin support vector machine based on artificial fish swarm algorithm[J].CAAI Transactions on Intelligent Systems,2019,14(6):1121-1126.[doi:10.11992/tis.201905025]
点击复制

基于人工鱼群算法的孪生支持向量机

参考文献/References:
[1] 丁世飞, 齐丙娟, 谭红艳. 支持向量机理论与算法研究综述[J]. 电子科技大学学报, 2011, 40(1):1-10 DING Shifei, QI Bingjuan, TAN Hongyan. An overview on theory and algorithm of support vector machines[J]. Journal of University of Electronic Science and Technol-ogy of China, 2011, 40(1):1-10
[2] CORTES C, VAPNIK V. Support-vector networks[J]. Machine learning, 1995, 20(3):273-297.
[3] CHEN Zhensong, QI Zhiquan, WANG Bo, et al. Learning with label proportions based on nonparallel support vector machines[J]. Knowledge-based systems, 2017, 119:126-141.
[4] CHEN Zhenyu, FAN Zhiping. Distributed customer be-havior prediction using multiplex data:a collaborative MK-SVM approach[J]. Knowledge-based systems, 2012, 35:111-119.
[5] MORAES R, VALIATI J F, NETO W P G. Docu-ment-level sentiment classification:an empirical compar-ison between SVM and ANN[J]. Expert systems with ap-plications, 2013, 40(2):621-633.
[6] ZHANG Xiekai, DING Shifei, XUE Yu. An improved multiple birth support vector machine for pattern classi-fication[J]. Neurocomputing, 2017, 225:119-128.
[7] DING Shifei, ZHANG Xiekai, AN Yuexuan, et al. Weighted linear loss multiple birth support vector machine based on information granulation for multi-class classification[J]. Pattern recognition, 2017, 67:32-46.
[8] SUYKENS J A K, VANDEWALLE J. Least squares support vector machine classifiers[J]. Neural processing letters, 1999, 9(3):293-300.
[9] FUNG G, MANGASARIAN O L. Proximal support vec-tor machine classifiers[C]//Proceedings of the 7th ACM SIGKDD International Conference on Knowledge Dis-covery and Data Mining. San Francisco, California, 2001:77-86.
[10] MANGASARIAN O L, WILD E W. Multisurface proxi-mal support vector machine classification via generalized eigenvalues[J]. IEEE transactions on pattern analysis and machine intelligence, 2006, 28(1):69-74.
[11] JAYADEVA, KHEMCHANDANI R, CHANDRA S. Twin support vector machines for pattern classification[J]. IEEE transactions on pattern analysis and machine intel-ligence, 2007, 29(5):905-910.
[12] HUANG Huajuan, WEI Xiuxi, ZHOU Yongquan. Twin support vector machines:a survey[J]. Neurocomputing, 2018, 300:34-43.
[13] 丁世飞. 孪生支持向量机:理论、算法与拓展[M]. 北京:科学出版社, 2017:16-31. DING Shifei. Twin support vector machine:theory, algo-rithm and extension[M]. Beijing:Science Press, 2017:16-31.
[14] KUMAR M A, GOPAL M. Application of smoothing technique on twin support vector machines[J]. Pattern recognition letters, 2008, 29(13):1842-1848.
[15] KUMAR M A, GOPAL M. Least squares twin support vector machines for pattern classification[J]. Expert sys-tems with applications, 2009, 36(4):7535-7543.
[16] KUMAR M A, KHEMCHANDANI R, Gopal M, et al. Knowledge based Least Squares Twin support vector machines[J]. Information sciences, 2010, 180(23):4606-4618.
[17] MIR A, NASIRI J A. KNN-based least squares twin sup-port vector machine for pattern classification[J]. Applied intelligence, 2018, 48(12):4551-4564.
[18] CHEN Sugen, WU Xiaojun. A new fuzzy twin support vector machine for pattern classification[J]. International journal of machine learning and cybernetics, 2018, 9(9):1553-1564.
[19] CHEN Xiaobo, YANG Jian, YE Qiaolin, et al. Recursive projection twin support vector machine via within-class variance minimization[J]. Pattern recognition, 2011, 44(10/11):2643-2655.
[20] XIE Xiaomin. Improvement on projection twin support vector machine[J]. Neural computing and applications, 2018, 30(2):371-387.
[21] XU Zongben, DAI Mingwei, MENG Deyu. Fast and effi-cient strategies for model selection of Gaussian support vector machine[J]. IEEE transactions on systems, man, and cybernetics, part B (cybernetics), 2009, 39(5):1292-1307.
[22] DING Shifei, YU Junzhao, HUANG Huajuan, et al. Twin support vector machines based on particle swarm optimi-zation[J]. Journal of computers, 2013, 8(9):2296-2303.
[23] DING Shifei, WU Fulin, NIE Ru, et al. Twin support vector machines based on quantum particle swarm opti-mization[J]. Journal of software, 2013, 8(7):1743-1750.
[24] ZHAI Shijun, PAN Juan, LUO Hongwei, et al. A new sense-through-foliage target recognition method based on hybrid particle swarm optimization-based wavelet twin support vector machine[J]. Measurement, 2016, 80:58-70.
[25] SARTAKHTI J S, AFRABANDPEY H, SARAEE M. Simulated annealing least squares twin support vector machine (SA-LSTSVM) for pattern classification[J]. Soft computing, 2017, 21(15):4361-4373.
[26] 李晓磊, 邵之江, 钱积新. 一种基于动物自治体的寻优模式:鱼群算法[J]. 系统工程理论与实践, 2002, 22(11):32-38 LI Xiaolei, SHAO Zhijiang, QIAN Jixin. An optimizing method based on autonomous animats:fish-swarm algo-rithm[J]. Systems engineering-theory & practice, 2002, 22(11):32-38
相似文献/References:
[1]刘恋,常冬霞,邓勇.动态小生境人工鱼群算法的图像分割[J].智能系统学报,2015,10(5):669.[doi:10.11992/tis.201501001]
 LIU lian,CHANG Dongxia,DENG Yong.An image segmentation method based on dynamic niche artificial fish-swarm algorithm[J].CAAI Transactions on Intelligent Systems,2015,10():669.[doi:10.11992/tis.201501001]
[2]史颂辉,丁世飞.基于能量的结构化最小二乘孪生支持向量机[J].智能系统学报,2020,15(5):1013.[doi:10.11992/tis.201906030]
 SHI Songhui,DING Shifei.Energy-based structural least square twin support vector machine[J].CAAI Transactions on Intelligent Systems,2020,15():1013.[doi:10.11992/tis.201906030]

备注/Memo

收稿日期:2019-05-13。
基金项目:国家自然科学基金项目(61672522,61379101).
作者简介:李景灿,男,1995年生,硕士研究生,主要研究方向为支持向量机和机器学习;丁世飞,男,1963年生,教授,博士生导师,主要研究方向为人工智能、机器学习、模式识别、数据挖掘。主持国家重点基础研究计划(973计划)课题1项、国家自然科学基金面上项目2项。出版专著4部,发表学术论文200余篇。
通讯作者:丁世飞.E-mail:dingsf@cumt.edu.cn

更新日期/Last Update: 2019-12-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com