[1]高庆吉,赵志华,徐达,等.语音情感识别研究综述[J].智能系统学报,2020,15(1):1-13.[doi:10.11992/tis.201904065]
GAO Qingji,ZHAO Zhihua,XU Da,et al.Review on speech emotion recognition research[J].CAAI Transactions on Intelligent Systems,2020,15(1):1-13.[doi:10.11992/tis.201904065]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
15
期数:
2020年第1期
页码:
1-13
栏目:
综述
出版日期:
2020-01-05
- Title:
-
Review on speech emotion recognition research
- 作者:
-
高庆吉, 赵志华, 徐达, 邢志伟
-
中国民航大学 电子信息与自动化学院, 天津 300300
- Author(s):
-
GAO Qingji, ZHAO Zhihua, XU Da, XING Zhiwei
-
College of Electronic Information and Automation, Civil Aviation University of China, Tianjin 300300, China
-
- 关键词:
-
深度学习; 情感语音数据库; 情感描述模型; 语音情感特征; 特征提取; 特征降维; 情感分类; 情感回归
- Keywords:
-
deep learning; sentiment speech databases; sentiment description models; acoustic sentiment features; feature extraction; feature reduction; sentiment classification; sentiment regression
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.201904065
- 摘要:
-
针对语音情感识别研究体系进行综述。这一体系包括情感描述模型、情感语音数据库、特征提取与降维、情感分类与回归算法4个方面的内容。本文总结离散情感模型、维度情感模型和两模型间单向映射的情感描述方法;归纳出情感语音数据库选择的依据;细化了语音情感特征分类并列出了常用特征提取工具;最后对特征提取和情感分类与回归的常用算法特点进行凝练并总结深度学习研究进展,并提出情感语音识别领域需要解决的新问题、预测了发展趋势。
- Abstract:
-
In this paper, the research system of speech emotion recognition is summarized. The system includes four aspects: emotion description models, emotion speech database, feature extraction and dimensionality reduction, sentiment classification and regression algorithms. Firstly, we sum up the emotional description method of discrete emotion model, dimensional emotion model and one-way mapping between two models, then conclude the basis of emotional speech database selection, and then refine the classification of speech emotion features and list common tools for extracting the characteristics, and finally, extract the features of common algorithms, such as feature extraction, emotion classification and regression, and make a conclusion of the progress made in deep-learning research. In addition, we also propose some problems that need to be solved in this field and predict development trend.
更新日期/Last Update:
1900-01-01