[1]赵帅群,郭虎升,王文剑.采用划分融合双向控制的粒度支持向量机[J].智能系统学报,2019,14(6):1243-1254.[doi:10.11992/tis.201904047]
 ZHAO Shuaiqun,GUO Husheng,WANG Wenjian.Granular support vector machine with bidirectional control of division-fusion[J].CAAI Transactions on Intelligent Systems,2019,14(6):1243-1254.[doi:10.11992/tis.201904047]
点击复制

采用划分融合双向控制的粒度支持向量机

参考文献/References:
[1] VAPNIK V. The nature of statistical learning theory[M]. New York:Springer, 1995.
[2] YUAN Ruixi, LI Zhu, GUAN Xiaohong, et al. An SVM-based machine learning method for accurate internet traffic classification[J]. Information systems frontiers, 2010, 12(2):149-156.
[3] CHEN G Y, XIE W F. Pattern recognition with SVM and dual-tree complex wavelets[J]. Image and vision computing, 2007, 25(6):960-966.
[4] REYNA R A, ESTEVE D, HOUZET D, et al. Implementation of the SVM neural network generalization function for image processing[C]//Proceedings of the 5th IEEE International Workshop on Computer Architectures for Machine Perception. Padova, Italy, 2000:147-151.
[5] LIU Yang, WEN Kaiwen, GAO Quanxue, et al. SVM based multi-label learning with missing labels for image annotation[J]. Pattern recognition, 2018, 78:307-317.
[6] XIONG Xiaoxia, CHEN Long, LIANG Jun. A new framework of vehicle collision prediction by combining SVM and HMM[J]. IEEE transactions on intelligent transportation systems, 2018, 19(3):699-710.
[7] BISHWAS A K, MANI A, PALADE V. An all-pair quantum SVM approach for big data multiclass classification[J]. Quantum information processing, 2018, 17(10):282.
[8] ZHOU Xueliang, JIANG Pingyu, WANG Xianxiang. Recognition of control chart patterns using fuzzy SVM with a hybrid kernel function[J]. Journal of intelligent manufacturing, 2018, 29(1):51-67.
[9] TANG Yuchun, JIN Bo, SUN Yi, et al. Granular support vector machines for medical binary classification problems[C]//Proceedings of 2004 IEEE Symposium on Computational Intelligence in Bioinformatics and Computational Biology. La Jolla, USA, 2004:73-78.
[10] YU H, YANG J, HAN Jiawei. Classifying large data sets using SVMs with hierarchical clusters[C]//Proceedings of the 9th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Washington, USA, 2003:306-315.
[11] WANG Wenjian, XU Zongben. A heuristic training for support vector regression[J]. Neurocomputing, 2004, 61:259-275.
[12] MAO Xueyu, SARKAR P, CHAKRABARTI D. Overlapping Clustering Models, and One (class) SVM to Bind Them All[J]. arXiv:1806.06945, 2018.
[13] DING Shifei, QI Bingjuan. Research of granular support vector machine[J]. Artificial intelligence review, 2012, 38(1):1-7.
[14] GUO Husheng, WANG Wenjian, MEN Changqian. A novel learning model-Kernel granular support vector machine[C]//Proceedings of 2009 International Conference on Machine Learning and Cybernetics. Hebei, China, 2009:930-935.
[15] 程凤伟, 王文剑, 郭虎升. 动态粒度SVM学习算法[J]. 模式识别与人工智能, 2014, 27(4):372-377 CHENG Fengwei, WANG Wenjian, GUO Husheng. Dynamic granular support vector machine learning algorithm[J]. Pattern recognition and artificial intelligence, 2014, 27(4):372-377
[16] HASSAN R, OTHMAN R M, SHAH Z A. Granular support vector machine to identify unknown structural classes of protein[J]. International journal of data mining and bioinformatics, 2015, 12(4):451-467.
[17] GUO Husheng, WANG Wenjian. Granular support vector machine:a review[J]. Artificial intelligence review, 2019, 51(1):19-32.
[18] MA Zhixian, LI Weitian, WANG Lei, et al. X-ray astronomical point sources recognition using granular binary-tree SVM[C]//Proceedings of the 13th International Conference on Signal Processing. Chengdu, China, 2017:1021-1026.
[19] GUO Husheng, WANG Wenjian. Support vector machine based on hierarchical and dynamical granulation[J]. Neurocomputing, 2016, 211:22-33.
[20] 郭虎升, 王文剑. 动态粒度支持向量回归机[J]. 软件学报, 2013, 24(11):2535-2547 GUO Husheng, WANG Wenjian. Dynamical granular support vector regression machine[J]. Journal of software, 2013, 24(11):2535-2547
[21] YAO Y. Perspectives of granular computing[C]//Proceedings of 2005 IEEE International Conference on Granular Computing. Beijing, China, 2005:85-90.
[22] TANG Yuchun, JIN Bo, ZHANG Yanqing. Granular support vector machines with association rules mining for protein homology prediction[J]. Artificial intelligence in medicine, 2005, 35(1/2):121-134.
[23] LI Boyang, WANG Qiangwei, HU Jinglu. A fast SVM training method for very large datasets[C]//Proceedings of 2009 International Joint Conference on Neural Networks. Atlanta, USA, 2009:1784-1789.
[24] LI Xiaoou, YU Wen. Fast support vector machine classification for large data sets[J]. International journal of computational intelligence systems, 2014, 7(2):197-212.
[25] LI Xiaoou, CERVANTES J, YU Wen. A novel SVM classification method for large data sets[C]//Proceedings of 2010 IEEE International Conference on Granular Computing. San Jose, USA, 2010:297-302.
相似文献/References:
[1]王书舟,伞 冶.支持向量机的训练算法综述[J].智能系统学报,2008,3(6):467.
 WANG Shu-zhou,SAN Ye.A survey on training algorithms for support vector machine[J].CAAI Transactions on Intelligent Systems,2008,3():467.
[2]陈小娥,陈昭炯.多类SVM在图像艺术属性分类中的应用研究[J].智能系统学报,2009,4(2):157.
 CHEN Xiao-e,CHEN Zhao-jiong.An application of multiclass SVM in the classification of artistic attributes of images[J].CAAI Transactions on Intelligent Systems,2009,4():157.
[3]黄剑华,唐降龙,刘家锋,等.一种基于Homogeneity的文本检测新方法[J].智能系统学报,2007,2(1):69.
 HUANG Jian-hua,TANG Xiang-long,LIU Jia-feng,et al.A new method for text detection based on Homogeneity[J].CAAI Transactions on Intelligent Systems,2007,2():69.
[4]张 亮,朱振峰,赵 耀,等.基于镜头的鲁棒视频广告检测[J].智能系统学报,2007,2(2):83.
 ZHANG Liang,ZHU Zhen-feng,ZHAO Yao,et al.Video commercial detection based on the robustness of sho t[J].CAAI Transactions on Intelligent Systems,2007,2():83.
[5]赵春晖,陈万海,万? 建.一种改进的多类支持向量机超光谱图像分类方法[J].智能系统学报,2008,3(1):77.
 ZHAO Chun-hui,CHEN Wan-hai,WAN jian.An improved hyperspectral image classification method for? a multiclass support vector machine[J].CAAI Transactions on Intelligent Systems,2008,3():77.
[6]杨志豪,洪 莉,林鸿飞,等.基于支持向量机的生物医学文献蛋白质关系抽取[J].智能系统学报,2008,3(4):361.
 YANG Zhi-hao,HONG L i,L IN Hong-fei,et al.Extraction of information on prote in2prote in interaction from biomedical literatures using an SVM[J].CAAI Transactions on Intelligent Systems,2008,3():361.
[7]刘? 琚,乔建苹.基于学习的超分辨率重建技术[J].智能系统学报,2009,4(3):199.
 LIU Ju,QIAO Jian-ping.Learningbased superresolution reconstruction[J].CAAI Transactions on Intelligent Systems,2009,4():199.
[8]刘 胜,李高云,江 娜.SVM性能的免疫鱼群多目标优化研究[J].智能系统学报,2010,5(2):144.
 LIU Sheng,LI Gao-yun,JIANG Na.Multiobjective optimization of an immune fish swarm algorithm to improve support vector machine performance[J].CAAI Transactions on Intelligent Systems,2010,5():144.
[9]杨振兴,刘久富,孙 琳.不变量的程序潜在错误预测[J].智能系统学报,2010,5(4):327.
 YANG Zhen-xing,LIU Jiu-fu,SUN Lin.Using invariants to predict the potential for errors in programs[J].CAAI Transactions on Intelligent Systems,2010,5():327.
[10]古丽娜孜,孙铁利,伊力亚尔,等.一种基于主动学习支持向量机哈萨克文文本分类方法[J].智能系统学报,2011,6(3):261.
 GU Linazi,SUN Tieli,YI Liyaer,et al.An approach to the text categorization of the Kazakh language based on an active learning support vector machine[J].CAAI Transactions on Intelligent Systems,2011,6():261.
[11]黄华娟,韦修喜,周永权.基于模糊核聚类粒化的粒度支持向量机[J].智能系统学报,2019,14(6):1271.[doi:10.11992/tis.201904048]
 HUANG Huajuan,WEI Xiuxi,ZHOU Yongquan.Granular support vector machine based on fuzzy kernel clustering granulation[J].CAAI Transactions on Intelligent Systems,2019,14():1271.[doi:10.11992/tis.201904048]

备注/Memo

收稿日期:2019-04-19。
基金项目:国家自然科学基金项目(61673249,61503229,U1805263);山西省回国留学人员科研基金项目(2016-004).
作者简介:赵帅群,男,1993年,硕士研究生,主要研究方向为机器学习;郭虎升,男,1986年,副教授,博士,主要研究方向为机器学习与数据发掘。主持国家自然科学基金项目1项、省部级项目多项。发表学术论文30余篇;王文剑,女,1968年,教授,博士,主要研究方向为计算智能、机器学习与数据挖掘。主持国家自然科学基金项目4项、省部级项目及企事业委托项目20余项。发表学术论文150余篇
通讯作者:王文剑.E-mail:wjwang@sxu.edu.cn

更新日期/Last Update: 2019-12-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com