[1]申凯,王晓峰,杨亚东.基于双向消息链路卷积网络的显著性物体检测[J].智能系统学报,2019,14(6):1152-1162.[doi:10.11992/tis.201812003]
SHEN Kai,WANG Xiaofeng,YANG Yadong.Salient object detection based on bidirectional message link convolution neural network[J].CAAI Transactions on Intelligent Systems,2019,14(6):1152-1162.[doi:10.11992/tis.201812003]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
14
期数:
2019年第6期
页码:
1152-1162
栏目:
学术论文—智能系统
出版日期:
2019-11-05
- Title:
-
Salient object detection based on bidirectional message link convolution neural network
- 作者:
-
申凯, 王晓峰, 杨亚东
-
上海海事大学 信息工程学院, 上海 201306
- Author(s):
-
SHEN Kai, WANG Xiaofeng, YANG Yadong
-
College Of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
-
- 关键词:
-
显著性物体检测; 卷积神经网络; 注意力机制; 双向消息链路; 多尺度融合
- Keywords:
-
salient object detection; convolutional neural network; attention mechanism; bidirectional message link; multi-scale fusion
- 分类号:
-
TP391.4
- DOI:
-
10.11992/tis.201812003
- 摘要:
-
有效特征的提取和高效使用是显著性物体检测中极具挑战的任务之一。普通卷积神经网络很难兼顾提取有效特征和高效使用这些特征。本文提出双向消息链路卷积网络(bidirectional message link convolution network,BML-CNN)模型,提取和融合有效特征信息用于显著性物体检测。首先,利用注意力机制引导特征提取模块提取实体有效特征,并以渐进方式选择整合多层次之间的上下文信息。然后使用带有跳过连接结构的网络与带门控函数的消息传递链路组成的双向信息链路,将高层语义信息与浅层轮廓信息相融合。最后,使用多尺度融合策略,编码多层有效卷积特征,以生成最终显著图。实验表明,BML-CNN在不同指标下均获得最好的表现。
- Abstract:
-
The effective extraction and efficient utilization of features are among the most challenging tasks in salient object detection. The common convolutional neural network (CNN) can hardly reach a fine trade-off between effective feature extraction and efficient utilization. This paper proposes a bidirectional message link convolutional neural network (BML-CNN) model, which can extract and fuse effective features for salient object detection. First, the attention mechanism is used to guide the feature extraction module to extract the effective entity features, select, and integrate the multi-level context information in a progressive way. Second, the high-level semantic information is merged with shallow-profile information by a bidirectional message link, which is composed of a skip connection structure and a messaging link with a gating function. Finally, the saliency map can be generated by multi-scale fusion strategy, and effective features are encoded on several layers. The qualitative and quantitative experiments on six benchmark datasets show that the BML-CNN reaches the state-of-the-art performance under different indexes.
备注/Memo
收稿日期:2018-12-04。
基金项目:国家自然科学基金项目(61872231,61703267);上海海事大学研究生创新基金项目(2017ycx083).
作者简介:申凯,男,1996年生,硕士研究生,主要研究方向为计算机视觉、图像处理与视觉问答;王晓峰,男,1958年生,教授,博士生导师,International Journal of Granular Computing,Rough Sets and Intelligent Systems (IJGCRSIS)编委,中国人工智能学会机器学习专业委员会常务委员,中国人工智能学会智能交通专业委员会委员等。主要研究方向为人工智能、数据挖掘与知识发现。主持和参加国家863计划课题、国家自然科学基金重点课题各1项,主持国家合作项目2项、辽宁省自然科学基金2项,科研项目30余项。发表学术论文70余篇;杨亚东,男,1990年生,博士研究生,主要研究方向为计算机视觉、图像处理。
通讯作者:王晓峰.E-mail:xfwang@shmtu.edu.cn
更新日期/Last Update:
2019-12-25