[1]何锐波,狄岚,梁久祯.一种改进的深度学习的道路交通标识识别算法[J].智能系统学报,2020,15(6):1121-1130.[doi:10.11992/tis.201811009]
HE Ruibo,DI Lan,LIANG Jiuzhen.An improved deep learning algorithm for road traffic identification[J].CAAI Transactions on Intelligent Systems,2020,15(6):1121-1130.[doi:10.11992/tis.201811009]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
15
期数:
2020年第6期
页码:
1121-1130
栏目:
学术论文—机器学习
出版日期:
2020-11-05
- Title:
-
An improved deep learning algorithm for road traffic identification
- 作者:
-
何锐波1,2, 狄岚1, 梁久祯3
-
1. 江南大学 人工智能与计算机学院, 江苏 无锡 214122;
2. 中国电子科技集团公司第二十八研究所, 江苏 南京 210007;
3. 常州大学 信息科学与工程学院, 江苏 常州 213164
- Author(s):
-
HE Ruibo1,2, DI Lan1, LIANG Jiuzhen3
-
1. School of Artificial Intelligence and Computer Science, Jiangnan University, Wuxi 214122, China;
2. The 28th Research Institute of China Electronics Technology Group Corporation, Nanjing 210007, China;
3. School of Information Science and Engineering, Changzhou University, Changzhou 213164, China
-
- 关键词:
-
道路交通标识识别; 图像分割; 卷积神经网络; 去除复杂背景; 数据增强; 归一化; 压缩和激励网络; 残差连接
- Keywords:
-
road traffic identification; image segmentation; convolutional neural network; complex background elimination; data enhancement; normalization; squeeze-and-excitation network; residual connection
- 分类号:
-
TP391.4
- DOI:
-
10.11992/tis.201811009
- 摘要:
-
针对复杂的环境,结合图像预处理与深度学习神经网络,提出了一种道路交通标识识别算法。该方法不仅利用图像分割技术,而且利用卷积神经网络模型对道路交通标识进行了更准确的识别。首先,通过调节光照影响、去除复杂背景、数据增强和归一化等批量预处理操作,形成一个完整的数据集;然后,结合squeeze-and-excitation思想和残差网络结构,充分训练出自己的卷积神经网络模型;最后,将优化的网络模型用于道路交通标识的识别。实验结果表明,该方法使训练时间缩短了12%左右,识别精度可达99.26%。
- Abstract:
-
This study proposes a road traffic identification algorithm based on image preprocessing and deep-learning neural networks for complex environments. The proposed method uses not only the image segmentation technology but also the convolutional neural network model to more accurately identify the road traffic signs. First, a complete dataset is obtained via batch preprocessing operations, including illumination effect adjustment, complex background elimination, data enhancement, and normalization. Next, the convolutional neural network model is sufficiently trained based on the combination of the squeeze-and-excitation network and residual network structure concepts. Finally, the optimized network model is used to identify the road traffic signs. The experimental result shows that the proposed method reduces the training time by approximately 12% and that the recognition accuracy can reach 99.26%.
备注/Memo
收稿日期:2018-11-11。
基金项目:江苏省研究生科研与实践创新计划项目(KYCX18_1872)
作者简介:何锐波,硕士研究生,主要研究方向为人工智能和数字图像处理;狄岚,副教授,中国人工智能学会粒计算与知识发现专业委员会委员,主要研究方向为数字图像处理和计算机仿真。近年主持及参与国家级、省部级科研项目7项,主持校级科研项目4项、企业合作项目近20项,获得省级自然科学学术奖1次,行业联合会技术奖3次。发表学术论文50余篇;梁久祯,教授,博士,中国计算机学会多媒体专业委员会委员,江苏省人工智能学会理事,主要研究方向为计算机视觉和数字图像处理。主持项目10余项,曾获得浙江省青年英才奖。取得专利成果57项,软件著作7项。发表学术论文160余篇,出版教材及专著4部
通讯作者:狄岚.E-mail:dilan@jiangnan.edu.cn
更新日期/Last Update:
2020-12-25