[1]何华灿.重新找回人工智能的可解释性[J].智能系统学报,2019,14(3):393-412.[doi:10.11992/tis.201810020]
HE Huacan.Refining the interpretability of artificial intelligence[J].CAAI Transactions on Intelligent Systems,2019,14(3):393-412.[doi:10.11992/tis.201810020]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
14
期数:
2019年第3期
页码:
393-412
栏目:
综述
出版日期:
2019-05-05
- Title:
-
Refining the interpretability of artificial intelligence
- 作者:
-
何华灿
-
西北工业大学 计算机学院, 陕西 西安 710072
- Author(s):
-
HE Huacan
-
School of Computer Science, Northwestern Polytechnical University, Xi’an 710072, China
-
- 关键词:
-
人工智能; 可解释性; 演化; 不确定性; 泛逻辑学; 柔性命题逻辑; 柔性神经元; 数理辩证逻辑
- Keywords:
-
artificial intelligence; interpretability; evolution; uncertainty; universal logic; flexible propositional logic; flexible neurons; mathematical dialectic logic
- 分类号:
-
TP18
- DOI:
-
10.11992/tis.201810020
- 摘要:
-
针对深度神经网络AI研究的可解释性瓶颈,指出刚性逻辑(数理形式逻辑)和二值神经元等价,二值神经网络可转换成逻辑表达式,有强可解释性。深度神经网络一味增加中间层数来拟合大数据,没有适时通过抽象把最小粒度的数据(原子)变成粒度较大的知识(分子),再把较小粒度的知识变成较大粒度的知识,把原有的强可解释性淹没在中间层次的汪洋大海中。要支持多粒度的知识处理,需把刚性逻辑扩张为柔性命题逻辑(命题级数理辩证逻辑),把二值神经元扩张为柔性神经元,才能保持强可解释性。本文详细介绍了从刚性逻辑到柔性逻辑的扩张过程和成果,最后介绍了它们在AI研究中的应用,这是重新找回AI研究强可解释性的最佳途径。
- Abstract:
-
In view of the restrictions on the interpretability of artificial intelligence (AI) research on deep neural networks, it is indicated that rigid logic (mathematical formal logic) and binary neurons are equivalent. Moreover, a binary neural network can be converted into a logical expression, which is highly interpretable. The deep neural network blindly increases the number of intermediate layers to fit big data without the timely abstraction of data with the smallest granularity (atom) into knowledge with larger granularity (molecule), changes knowledge with smaller granularity into knowledge with larger granularity, and submerges the original strong explanatory power in the ocean of intermediate layers. To support knowledge processing of multiple granularities, rigid logic should be expanded into flexible propositional logic (proposition-level mathematical dialectic logic) and binary neurons should be expanded into flexible neurons to maintain the strong explanatory power. This paper introduces in detail the achievement of the expansion process from rigid logic to flexible logic and its application in AI research, which is the best method to recover the interpretability of AI.
备注/Memo
收稿日期:2018-10-17。
基金项目:国家自然科学基金面上项目(60273087);西北工业大学基础研究基金重点项目(W18101).
作者简介:何华灿,男,1938年生,教授,博士生导师,主要研究方向为计算机科学和人工智能基础理论,创立泛逻辑理论和柔性神经元原理,近期主要研究广义概率论和数理辩证逻辑及其在智能信息处理中的应用。主持完成国家和省部级自然科学基金项目8项,9次获得省部级科技进步奖。发表学术论文160余篇,出版专著9部。
通讯作者:何华灿.E-mail:hehuac@nwpu.edu.cn
更新日期/Last Update:
1900-01-01