[1]杨达,狄岚,赵树志,等.基于结构相似性与模板校正的织物瑕疵检测方法[J].智能系统学报,2020,15(3):475-483.[doi:10.11992/tis.201810011]
YANG Da,DI Lan,ZHAO Shuzhi,et al.Fabric defect detection based on structural similarity and template correction[J].CAAI Transactions on Intelligent Systems,2020,15(3):475-483.[doi:10.11992/tis.201810011]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
15
期数:
2020年第3期
页码:
475-483
栏目:
学术论文—智能系统
出版日期:
2020-05-05
- Title:
-
Fabric defect detection based on structural similarity and template correction
- 作者:
-
杨达1, 狄岚1, 赵树志1, 梁久祯2
-
1. 江南大学 数字媒体学院,江苏 无锡 214122;
2. 常州大学 信息科学与工程学院,江苏 常州 213164
- Author(s):
-
YANG Da1, DI Lan1, ZHAO Shuzhi1, LIANG Jiuzhen2
-
1. School of Digital Media, Jiangnan University, Wuxi 214122, China;
2. School of Information Science and Engineering, Changzhou University, Changzhou 213164, China
-
- 关键词:
-
结构相似性; 周期性; 模板校正; 单位模板; 自动分割; 相似关系; 阈值分割; 瑕疵检测
- Keywords:
-
structural similarity; periodic; template correction; unit template; automatic segmentation; similarity relationship; threshold segementation; defect inspection
- 分类号:
-
TS131.9;TP18
- DOI:
-
10.11992/tis.201810011
- 摘要:
-
针对复杂的具有周期性结构的织物瑕疵检测,提出一种基于结构相似性与模板校正的织物瑕疵检测方法。通过图案的周期性,得到图案单位模板大小,再对图像自动分割,同时应用基于模板校正的方法以减少晶格之间未对准的影响,并构建均值模板。通过计算所有晶格间的结构相似性,并将相似关系通过传递闭包的方式得到等价关系,再进行晶格间的聚类。之后通过阈值分割方法,完成瑕疵区域的检测。通过实验表明,改进后的算法检测效果较好,本文算法显著提高了样本的查准率。
- Abstract:
-
Focusing on the detection of defects in textiles with complex periodic patterns, a fabric defect detection method based on structural similarity and template correction is proposed. The unit template size of the pattern is obtained according to the periodicity of the pattern texture. Then, the image is divided adaptively. At the same time, template correction is applied to reduce the effect of misalignment between grids. In addition, an average template is established. The structural similarity between all the lattices is calculated, and such similarity is observed in the pattern of the closure packet and used to obtain the equivalence relation. Then, the clustering between all the lattices is performed. Furthermore, the detection of the defect region is completed using the proposed threshold segmentation method. Experiments show that the proposed algorithm has better detection effect than other algorithms and significantly improves the precision ratio of the sample.
更新日期/Last Update:
1900-01-01