[1]祁成,史旭东,熊伟丽.基于二阶相似度的即时学习软测量建模方法[J].智能系统学报,2020,15(5):910-918.[doi:10.11992/tis.201809040]
QI Cheng,SHI Xudong,XIONG Weili.A just-in-time learning soft sensor modeling method based on the second-order similarity[J].CAAI Transactions on Intelligent Systems,2020,15(5):910-918.[doi:10.11992/tis.201809040]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
15
期数:
2020年第5期
页码:
910-918
栏目:
学术论文—机器学习
出版日期:
2020-09-05
- Title:
-
A just-in-time learning soft sensor modeling method based on the second-order similarity
- 作者:
-
祁成1, 史旭东1, 熊伟丽1,2
-
1. 江南大学 物联网工程学院,江苏 无锡 214122;
2. 江南大学 轻工过程先进控制教育部重点实验室,江苏 无锡 214122
- Author(s):
-
QI Cheng1, SHI Xudong1, XIONG Weili1,2
-
1. School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China;
2. Key Laboratory of Advanced Process Control for Light Industry Jiangnan University, Ministry of Education, Wuxi 214122, China
-
- 关键词:
-
即时学习; 更新频率; 二阶相似度; 相似度准则; 一阶相似度; 局部模型; 累计相似度因子; 相似度阈值
- Keywords:
-
just-in-time learning; update frequency; second-order similarity; similarity criterion; first-order similarity; local model; cumulative similarity factor; similarity threshold
- 分类号:
-
TP273
- DOI:
-
10.11992/tis.201809040
- 文献标志码:
-
A
- 摘要:
-
针对即时(惰性)学习模型频率降低间接导致的精度下降问题,提出一种二阶相似性的即时学习方法。该方法综合顾及到样本集的整体分布特性,在传统一阶相似度准则的基础上建立二阶相似度准则,采用与测试样本具有绝大部分相同近邻的二阶相似样本建立当前时刻的模型;同时将累计相似度因子用于建立局部模型时样本量的确定,并采用相似度阈值的方式判断此刻模型是否需要重新建立。该方法在青霉素发酵过程产物浓度的预测实验中得到了有效的验证。
- Abstract:
-
Aiming at the indirect accuracy reduction caused by the frequency reduction of just-in-time (lazy) learning model, a second-order similarity just-in-time learning method is proposed. This method takes into account the overall distribution characteristics of the sample set, establishes a second-order similarity criterion based on the traditional first-order similarity criterion, and uses a second-order similarity sample with most of the same neighbors as the test sample to establish the model at the current time. At the same time, the cumulative similarity factor is used to determine the sample size when the local model is established, and the similarity threshold is used to determine whether the model needs to be rebuilt at this time. This method has been effectively validated in the prediction experiment of the product concentration in the fermentation process of penicillin.
备注/Memo
收稿日期:2018-09-21。
基金项目:国家自然科学基金项目(61773182);江苏省自然科学基金项目(BK20170198)
作者简介:祁成,硕士研究生,主要研究方向为工业过程建模;史旭东,硕士研究生,主要研究方向为工业过程建模;熊伟丽,教授,博士。主要研究方向为复杂工业过程建模及优化、智能优化算法及应用。发表学术论文130余篇。
通讯作者:熊伟丽.E-mail:greenpre@163.com
更新日期/Last Update:
2021-01-15