[1]张雄涛,胡文军,王士同.一种基于模糊划分和模糊加权的集成深度信念网络[J].智能系统学报,2019,14(5):905-914.[doi:10.11992/tis.201809018]
 ZHANG Xiongtao,HU Wenjun,WANG Shitong.Ensemble deep belief network based on fuzzy partitioning and fuzzy weighting[J].CAAI Transactions on Intelligent Systems,2019,14(5):905-914.[doi:10.11992/tis.201809018]
点击复制

一种基于模糊划分和模糊加权的集成深度信念网络

参考文献/References:
[1] HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786):504-507.
[2] HINTON G E. A practical guide to training restricted boltzmann machines[M]//MONTAVON G, ORR G B, MüLLER K R. Neural Networks:Tricks of the Trade. Berlin, Heidelberg:Springer, 2012:599?619.
[3] HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural computation, 2006, 18(7):1527-1544.
[4] DESJARDINS G, COURVILLE A, BENGIO Y. Adaptive parallel tempering for stochastic maximum likelihood learning of RBMs[C]//Proceedings of NIPS 2010 Workshop on Deep Learning and Unsupervised Feature Learning. Granada, Spain, 2010.
[5] LEE S, CHANG J H. Deep belief networks ensemble for blood pressure estimation[J]. IEEE access, 2017, 5:9962-9972.
[6] QIU Xueheng, ZHANG Le, REN Ye, et al. Ensemble deep learning for regression and time series forecasting[C]//Proceedings of 2014 IEEE Symposium on Computational Intelligence in Ensemble Learning. Orlando, USA, 2014:1?6.
[7] ZHANG Chong, LIM P, QIN A K, et al. Multiobjective deep belief networks ensemble for remaining useful life estimation in prognostics[J]. IEEE transactions on neural networks and learning systems, 2017, 28(10):2306-2318.
[8] MOHAMED A R, YU Dong, DENG Li. Investigation of full-sequence training of deep belief networks for speech recognition[C]//Proceedings of Interspeech 2010. Chiba, Japan, 2010:2846-2849.
[9] AU W H, CHAN K C C, WONG A K C. A fuzzy approach to partitioning continuous attributes for classification[J]. IEEE transactions on knowledge and data engineering, 2006, 18(5):715-719.
[10] CHUANG C C. Fuzzy weighted support vector regression with a fuzzy partition[J]. IEEE transactions on systems, man, and cybernetics, part B, 2007, 37(3):630-640.
[11] RATHORE P, BEZDEK J C, ERFANI S M, et al. Ensemble fuzzy clustering using cumulative aggregation on random projections[J]. IEEE transactions on fuzzy systems, 2018, 26(3):1510-1524.
[12] YU Zhiwen, ZHANG Yidong, CHEN C L P, et al. Multiobjective semisupervised classifier ensemble[J]. IEEE transactions on cybernetics, 2019, 49(6):2280-2293.
[13] ZHOU Ta, ZHANG Zhifeng, WANG Sifan, et al. Stacked unitwise fast combination classification for single hidden layer neural networks using extreme learning machine on EEG signals[J]. Journal of medical imaging and health informatics, 2018, 8(7):1491-1495.
[14] KUNCHEVA L I, WHITAKER C J. Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy[J]. Machine learning, 2003, 51(2):181-207.
[15] KITTLER J, HATEF M, DUIN R P W, et al. On combining classifiers[J]. IEEE transactions on pattern analysis and machine intelligence, 1998, 20(3):226-239.
[16] 蒋亦樟, 朱丽, 刘丽, 等. 多视角模糊双加权可能性聚类算法[J]. 智能系统学报, 2017, 12(6):806-815 JIANG Yizhang, ZHU Li, LIU Li, et al. Multi-view fuzzy double-weighting possibility clustering algorithm[J]. CAAI transactions on intelligent systems, 2017, 12(6):806-815
[17] LIU Jiefang, CHUNG F L, WANG Shitong. Black hole entropic fuzzy clustering[J]. IEEE transactions on systems, man, and cybernetics:systems, 2018, 48(9):1622-1636.
[18] ZHU Lin, CHUNG F L, WANG Shitong. Generalized fuzzy c-means clustering algorithm with improved fuzzy partitions[J]. IEEE transactions on systems, man, and cybernetics, part b, 2009, 39(3):578-591.
[19] 张远鹏, 邓赵红, 钟富礼, 等. 基于代表点评分策略的快速自适应聚类算法[J]. 计算机研究与发展, 2018, 55(1):163-178 ZHANG Yuanpeng, DENG Zhaohong, ZHONG Fuli, et al. Fast self-adaptive clustering algorithm based on exemplar score strategy[J]. Journal of computer research and development, 2018, 55(1):163-178
[20] DENG Zhaohong, JIANG Yizhang, CHUNG F L, et al. Transfer prototype-based fuzzy clustering[J]. IEEE transactions on fuzzy systems, 2016, 24(5):1210-1232.
[21] ASUNCION A, NEWMAN D J. UCI machine learning repository[EB/OL]. (2009-10-16)[2019-05-10] http://archive.ics.uci.edu/ml.
[22] ZHOU Zhihua, LI Ming. Tri-training:exploiting unlabeled data using three classifiers[J]. IEEE transactions on knowledge and data engineering, 2005, 17(11):1529-1541.
[23] WANG Shuo, YAO Xin. Relationships between diversity of classification ensembles and single-class performance measures[J]. IEEE transactions on knowledge and data engineering, 2013, 25(1):206-219.
相似文献/References:
[1]张媛媛,霍静,杨婉琪,等.深度信念网络的二代身份证异构人脸核实算法[J].智能系统学报,2015,10(2):193.[doi:10.3969/j.issn.1673-4785.201405060]
 ZHANG Yuanyuan,HUO Jing,YANG Wanqi,et al.A deep belief network-based heterogeneous face verification method for the second-generation identity card[J].CAAI Transactions on Intelligent Systems,2015,10():193.[doi:10.3969/j.issn.1673-4785.201405060]
[2]刘帅师,程曦,郭文燕,等.深度学习方法研究新进展[J].智能系统学报,2016,11(5):567.[doi:10.11992/tis.201511028]
 LIU Shuaishi,CHENG Xi,GUO Wenyan,et al.Progress report on new research in deep learning[J].CAAI Transactions on Intelligent Systems,2016,11():567.[doi:10.11992/tis.201511028]
[3]李京政,杨习贝,窦慧莉,等.重要度集成的属性约简方法研究[J].智能系统学报,2018,13(3):414.[doi:10.11992/tis.201706080]
 LI Jingzheng,YANG Xibei,DOU Huili,et al.Research on ensemble significance based attribute reduction approach[J].CAAI Transactions on Intelligent Systems,2018,13():414.[doi:10.11992/tis.201706080]
[4]高媛,陈向坚,王平心,等.面向一致性样本的属性约简[J].智能系统学报,2019,14(6):1170.[doi:10.11992/tis.201905051]
 GAO Yuan,CHEN Xiangjian,WANG Pingxin,et al.Attribute reduction over consistent samples[J].CAAI Transactions on Intelligent Systems,2019,14():1170.[doi:10.11992/tis.201905051]

备注/Memo

收稿日期:2018-09-13。
基金项目:国家自然科学基金面上项目(61572236,61300151,61772198).
作者简介:张雄涛,男,1984年生,博士研究生,主要研究方向为模式识别、模糊系统;胡文军,男,1977年生,教授,主要研究方向为模式识别、人工智能;王士同,男,1964年生,教授,主要研究方向为人工智能、数据挖掘、模糊系统。
通讯作者:张雄涛.E-mail:1047897965@qq.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com