[1]王坤,谢振平,陈梅婕.基于图约简的知识联想关系网络建模[J].智能系统学报,2019,14(4):679-688.[doi:10.11992/tis.201808009]
 WANG Kun,XIE Zhenping,CHEN Meijie.Modeling knowledge network on associative relations based on graph reduction[J].CAAI Transactions on Intelligent Systems,2019,14(4):679-688.[doi:10.11992/tis.201808009]
点击复制

基于图约简的知识联想关系网络建模

参考文献/References:
[1] SINGHAL A. Introducing the knowledge graph:things, not strings[R]. America:Official Blog of Google, 2012.
[2] SIMMONS R F. Technologies for machine translation[J]. Future generation computer systems, 1986, 2(2):83-94.
[3] SIMMONS R F. Natural language question-answering systems:1969[J]. Communications of the ACM, 1970, 13(1):15-30.
[4] YU Y H, SIMMONS R F. Truly parallel understanding of text[C]//Proceedings of the Eighth National Conference on Artificial Intelligence. Boston, Massachusetts, 1990:996-1001.
[5] ARENAS M, DíAZ G, FOKOUE A, et al. A principled approach to bridging the gap between graph data and their schemas[J]. Proceedings of the VLDB endowment, 2014, 7(8):601-612.
[6] RAU L F. Extracting company names from text[C]//Proceedings. The Seventh IEEE Conference on Artificial Intelligence Application. Miami Beach, USA, 1991:29-32.
[7] LIU Xiaohua, ZHANG Shaodian, WEI Furu, et al. Recognizing named entities in tweets[C]//Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics:Human Language Technologies. Portland, Oregon, 2011:359-367.
[8] SOCHER R, CHEN Dandi, MANNING C D, et al. Reasoning with neural tensor networks for knowledge base completion[C]//Proceedings of the 26th International Conference on Neural Information Processing Systems. Lake Tahoe, Nevada, 2013:926-934.
[9] BOCCALETTI S, LATORA V, MORENO Y, et al. Complex networks:Structure and dynamics[J]. Physics reports, 2006, 424(4/5):175-308.
[10] 徐增林, 盛泳潘, 贺丽荣, 等. 知识图谱技术综述[J]. 电子科技大学学报, 2016, 45(4):589-606 XU Zenglin, SHENG Yongpan, HE Lirong, et al. Review on knowledge graph techniques[J]. Journal of university of electronic science and technology of China, 2016, 45(4):589-606
[11] 刘峤, 李杨, 段宏, 等. 知识图谱构建技术综述[J]. 计算机研究与发展, 2016, 53(3):582-600 LIU Qiao, LI Yang, DUAN Hong, et al. Knowledge graph construction techniques[J]. Journal of computer research and development, 2016, 53(3):582-600
[12] LI Yang, WANG Chi, HAN Fangqiu, et al. Mining evidences for named entity disambiguation[C]//Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Chicago, USA, 2013:1070-1078.
[13] HAN Xianpei, SUN Le, ZHAO Jun. Collective entity linking in web text:a graph-based method[C]//Proceedings of the 34th International ACM SIGIR Conference on Research and Development in Information Retrieval. Beijing, China, 2011:765-774.
[14] LEE T W, LEWICKI M S, GIROLAMI M, et al. Blind source separation of more sources than mixtures using overcomplete representations[J]. IEEE signal processing letters, 1999, 6(4):87-90.
[15] LU Shaoyuan, HSU K H, KUO Lijing. A semantic service match approach based on wordNet and SWRL rules[C]//Proceedings of the 2013 IEEE 10th International Conference on e-Business Engineering. Coventry, UK, 2013:419-422.
[16] 刘克彬, 李芳, 刘磊, 等. 基于核函数中文关系自动抽取系统的实现[J]. 计算机研究与发展, 2007, 44(8):1406-1411 LIU Kebin, LI Fang, LIU Lei, et al. Implementation of a kernel-based Chinese relation extraction system[J]. Journal of computer research and development, 2007, 44(8):1406-1411
[17] CARLSON A, BETTERIDGE J, WANG R C, et al. Coupled semi-supervised learning for information extraction[C]//Proceedings of the Third ACM International Conference on Web Search and Data Mining. New York, USA, 2010:101-110.
[18] ZHANG Yimin, ZHOU J F. A trainable method for extracting Chinese entity names and their relations[C]//Proceedings of the 2nd Workshop on Chinese Language Processing:Held in Conjunction with the 38th Annual Meeting of the Association for Computational Linguistics. Hong Kong, China, 2000:66-72.
[19] BANKO M, CAFARELLA M J, SODERLAND S, et al. Open information extraction from the web[C]//Proceedings of the 20th International Joint Conference on Artifical Intelligence. Hyderabad, India, 2007:2670-2676.
[20] 谢振平, 金晨, 刘渊. 基于建构主义学习理论的个性化知识推荐模型[J]. 计算机研究与发展, 2018, 55(1):125-138 XIE Zhenping, JIN Chen, LIU Yuan. Personalized knowledge recommendation model based on constructivist learning theory[J]. Journal of computer research and development, 2018, 55(1):125-138
[21] 刘知远, 孙茂松, 林衍凯, 等. 知识表示学习研究进展[J]. 计算机研究与发展, 2016, 53(2):247-261 LIU Zhiyuan, SUN Maosong, LIN Yankai. Knowledge representation learning:a review[J]. Journal of computer research and development, 2016, 53(2):247-261
[22] MICHEL A N, FARRELL J A. Associative memories via artificial neural networks[J]. IEEE control systems magazine, 1990, 10(3):6-17.
[23] BASSETT D S, MATTAR M G. A network neuroscience of human learning:potential to inform quantitative theories of brain and behavior[J]. Trends in cognitive sciences, 2017, 21(4):250-264.
[24] 刘冰瑶, 马静, 李晓峰. 一种"特征降维"文本复杂网络的话题表示模型[J]. 数据分析与知识发现, 2017, 1(11):53-61 LIU Bingyao, MA Jing, LI Xiaofeng. Topic representation model based on "feature dimensionality reduction"[J]. Data analysis and knowledge discovery, 2017, 1(11):53-61
[25] SUBBIAN K, AGGARWAL C, SRIVASTAVA J. Mining influencers using information flows in social streams[J]. ACM transactions on knowledge discovery from data, 2016, 10(3):26.
[26] ROSENBERG E. Maximal entropy coverings and the information dimension of a complex network[J]. Physics letters A, 2017, 381(6):574-580.
[27] 刘绍毓, 李弼程, 郭志刚, 等. 实体关系抽取研究综述[J]. 信息工程大学学报, 2016, 17(5):541-547 LIU Shaoyu, LI Bicheng, GUO Zhigang, et al. Review of entity relation extraction[J]. Journal of Information Engineering University, 2016, 17(5):541-547
[28] 美食百科[EB/OL].[2017-10-11]. Meishi-baike[EB/OL].[201-10-11].
[29] 食品百科[EB/OL].[2017-10-12]. http://www.foodbk.com/. Foodbk[EB/OL].[2017-10-12]. http://www.foodbk.com/.
[30] 王灿辉. 搜狐新闻数据[EB/OL].[2017-11-03]. http://www.sogou.com/labs/resource/cs.php. WANG Canhui. Sohu news data[EB/OL].[2017-11-03]. http://www.sogou.com/labs/resource/cs.php.
[31] 搜狐体育[EB/OL].[2017-11-05]. http://sports.sohu.com/. Sohu Sports[EB/OL].[2017-11-05]. http://sports.sohu.com/.
[32] SHAO Ming, WU Xindong, FU Yun. Scalable nearest neighbor sparse graph approximation by exploiting graph structure[J]. IEEE transactions on big data, 2016, 2(4):365-380.
相似文献/References:
[1]张瑞成,胡绪磊.基于小世界网络的Hopfield联想记忆模型[J].智能系统学报,2014,9(2):214.[doi:10.3969/j.issn.1673-4785.201211050]
 ZHANG Ruicheng,HU Xulei.Research on the hopfield associative memory model based on the small-world network[J].CAAI Transactions on Intelligent Systems,2014,9():214.[doi:10.3969/j.issn.1673-4785.201211050]
[2]崔婉秋,杜军平,周南,等.基于用户意图理解的社交网络跨媒体搜索与挖掘[J].智能系统学报,2017,12(6):761.[doi:10.11992/tis.201706075]
 CUI Wanqiu,DU Junping,ZHOU Nan,et al.Social network cross-media searching and mining based on user intention[J].CAAI Transactions on Intelligent Systems,2017,12():761.[doi:10.11992/tis.201706075]
[3]常亮,张伟涛,古天龙,等.知识图谱的推荐系统综述[J].智能系统学报,2019,14(2):207.[doi:10.11992/tis.201805001]
 CHANG Liang,ZHANG Weitao,GU Tianlong,et al.Review of recommendation systems based on knowledge graph[J].CAAI Transactions on Intelligent Systems,2019,14():207.[doi:10.11992/tis.201805001]
[4]贾中浩,古天龙,宾辰忠,等.旅游知识图谱特征学习的景点推荐[J].智能系统学报,2019,14(3):430.[doi:10.11992/tis.201810032]
 JIA Zhonghao,GU Tianlong,BIN Chenzhong,et al.Tourism knowledge-graph feature learning for attraction recommendations[J].CAAI Transactions on Intelligent Systems,2019,14():430.[doi:10.11992/tis.201810032]
[5]秦娅,申国伟,余红星.基于Hadoop的大规模网络安全实体识别方法[J].智能系统学报,2019,14(5):1017.[doi:10.11992/tis.201809024]
 QIN Ya,SHEN Guowei,YU Hongxing.Large-scale network security entity recognition method based on Hadoop[J].CAAI Transactions on Intelligent Systems,2019,14():1017.[doi:10.11992/tis.201809024]
[6]饶官军,古天龙,常亮,等.基于相似性负采样的知识图谱嵌入[J].智能系统学报,2020,15(2):218.[doi:10.11992/tis.201811022]
 RAO Guanjun,GU Tianlong,CHANG Liang,et al.Knowledge graph embedding based on similarity negative sampling[J].CAAI Transactions on Intelligent Systems,2020,15():218.[doi:10.11992/tis.201811022]
[7]贾中浩,宾辰忠,古天龙,等.基于知识图谱和用户长短期偏好的个性化景点推荐[J].智能系统学报,2020,15(5):990.[doi:10.11992/tis.201904064]
 JIA Zhonghao,BIN Chenzhong,GU Tianlong,et al.Personalized attraction recommendation based on the knowledge graph and users’ long-term and short-term preferences[J].CAAI Transactions on Intelligent Systems,2020,15():990.[doi:10.11992/tis.201904064]
[8]陈新元,谢晟祎,陈庆强,等.结合卷积特征提取和路径语义的知识推理[J].智能系统学报,2021,16(4):729.[doi:10.11992/tis.202008007]
 CHEN Xinyuan,XIE Shengyi,CHEN Qingqiang,et al.Knowledge-based inference on convolutional feature extraction and path semantics[J].CAAI Transactions on Intelligent Systems,2021,16():729.[doi:10.11992/tis.202008007]
[9]罗玲,李硕凯,何清,等.基于知识图谱、TF-IDF和BERT模型的冬奥知识问答系统[J].智能系统学报,2021,16(4):819.[doi:10.11992/tis.202105047]
 LUO Ling,LI Shuokai,HE Qing,et al.Winter Olympic Q & A system based on knowledge map, TF-IDF and BERT model[J].CAAI Transactions on Intelligent Systems,2021,16():819.[doi:10.11992/tis.202105047]
[10]黄庆明,王树徽,许倩倩,等.以图像视频为中心的跨媒体分析与推理[J].智能系统学报,2021,16(5):835.[doi:10.11992/tis.202105042]
 HUANG Qingming,WANG Shuhui,XU Qianqian,et al.Image video centered cross-media analysis and reasoning[J].CAAI Transactions on Intelligent Systems,2021,16():835.[doi:10.11992/tis.202105042]

备注/Memo

收稿日期:2018-06-12。
基金项目:国家自然科学基金项目(61872166);江苏省科技计划项目(BE2018056).
作者简介:王坤,男,1991年生,硕士研究生,主要研究方向为机器学习、知识网络;谢振平,男,1979年生,副教授,博士,CCF会员,主要研究方向为知识网络、演化学习、认知物理学。承担完成国家、省部级科研项目10项,负责承担完成产学研应用项目13项,正在主持国家自然科学基金面上项目、江苏省重点研发计划项目子课题等研究;陈梅婕,女,1995年生,硕士研究生,主要研究方向为机器学习、自然语言处理。
通讯作者:谢振平.E-mail:xiezhenping@hotmail.com

更新日期/Last Update: 2019-08-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com