[1]张燕,杜红乐.基于异构距离的集成分类算法研究[J].智能系统学报,2019,14(4):733-742.[doi:10.11992/tis.201807023]
ZHANG Yan,DU Hongle.Imbalanced heterogeneous data ensemble classification based on HVDM-KNN[J].CAAI Transactions on Intelligent Systems,2019,14(4):733-742.[doi:10.11992/tis.201807023]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
14
期数:
2019年第4期
页码:
733-742
栏目:
学术论文—机器学习
出版日期:
2019-07-02
- Title:
-
Imbalanced heterogeneous data ensemble classification based on HVDM-KNN
- 作者:
-
张燕, 杜红乐
-
商洛学院 数学与计算机应用学院, 陕西 商洛 726000
- Author(s):
-
ZHANG Yan, DU Hongle
-
School of Math and Computer Application, Shangluo University, Shangluo 726000, China
-
- 关键词:
-
异构数据; 不均衡数据; 异构距离; 集成学习; 过取样; 欠取样
- Keywords:
-
heterogeneous data; imbalanced data; heterogeneous value difference metric; ensemble learning; over sampling; undersampling
- 分类号:
-
TP391.4
- DOI:
-
10.11992/tis.201807023
- 摘要:
-
针对异构数据集下的不均衡分类问题,从数据集重采样、集成学习算法和构建弱分类器3个角度出发,提出一种针对异构不均衡数据集的分类方法——HVDM-Adaboost-KNN算法(heterogeneous value difference metric-Adaboost-KNN),该算法首先通过聚类算法对数据集进行均衡处理,获得多个均衡的数据子集,并构建多个子分类器,采用异构距离计算异构数据集中2个样本之间的距离,提高KNN算法的分类准性能,然后用Adaboost算法进行迭代获得最终分类器。用8组UCI数据集来评估算法在不均衡数据集下的分类性能,Adaboost实验结果表明,相比Adaboost等算法,F1值、AUC、G-mean等指标在异构不均衡数据集上的分类性能都有相应的提高。
- Abstract:
-
A novel classification method, the heterogeneous value difference metric-Adaboost-KNN (HVDM-Adaboost-KNN), is proposed to achieve data resampling, to obtain an ensemble learning algorithm, and to construct a weak classifier for addressing the imbalanced classification of a heterogeneous dataset. This algorithm initially equalizes the dataset using a clustering algorithm to obtain several equalized data subsets and constructs several sub-classifiers. Further, the heterogeneous distance is used to calculate the distance between two samples in the heterogeneous dataset to improve the classification accuracy of the KNN algorithm. Subsequently, the Adaboost algorithm is used to iteratively obtain the final classifier. Eight groups of UCI datasets are used to evaluate the classification performance of the algorithm in imbalanced datasets. The Adaboost experimental results denote that the classification performance of indices, such as the F1 value, AUC, and G-means, using the heterogeneous imbalanced datasets was better when compared with that exhibited by other algorithms.
备注/Memo
收稿日期:2018-07-22。
基金项目:陕西省自然科学基础研究计划项目(2015JM6347);陕西省教育厅科技计划项目(15JK1218);商洛学院科学与技术项目(18sky014);商洛学院科技创新团队建设项目(18SCX002);商洛学院重点学科建设项目,学科名:数学”.
作者简介:张燕,女,1977年生,讲师,主要研究方向为模式识别、机器学习。主持和参加省部级及企业合作项目6项。发表学术论文10余篇。;杜红乐,男,1979年生,副教授,主要研究方向为数据挖掘、机器学习。主持或承担校级以上项目12项。发表学术论文30余篇,被EI检索10余篇。
通讯作者:杜红乐.E-mail:dhl5597@163.com
更新日期/Last Update:
2019-08-25