[1]张燕,杜红乐.基于异构距离的集成分类算法研究[J].智能系统学报,2019,14(4):733-742.[doi:10.11992/tis.201807023]
 ZHANG Yan,DU Hongle.Imbalanced heterogeneous data ensemble classification based on HVDM-KNN[J].CAAI Transactions on Intelligent Systems,2019,14(4):733-742.[doi:10.11992/tis.201807023]
点击复制

基于异构距离的集成分类算法研究

参考文献/References:
[1] 胡峰, 王蕾, 周耀. 基于三支决策的不平衡数据过采样方法[J]. 电子学报, 2018, 46(1):136-144 HU Feng, WANG Lei, ZHOU Yao. An oversampling method for imbalance data based on three-way decision model[J]. Acta electronica sinica, 2018, 46(1):136-144
[2] SáEZ J A, LUENGO J, STEFANOWSKI J, et al. SMOTE-IPF:addressing the noisy and borderline examples problem in imbalanced classification by a re-sampling method with filtering[J]. Information sciences, 2015, 291:184-203.
[3] PRUSTY M R, JAYANTHI T, VELUSAMY K. Weighted-SMOTE:a modification to SMOTE for event classification in sodium cooled fast reactors[J]. Progress in nuclear energy, 2017, 100:355-364.
[4] MATHEW J, LUO Ming, PANG C K, et al. Kernel-based SMOTE for SVM classification of imbalanced datasets[C]//Proceedings of the 41st Annual Conference of the IEEE Industrial Electronics Society. Yokohama, Japan, 2015:1127-1132.
[5] 武森, 刘露, 卢丹. 基于聚类欠采样的集成不均衡数据分类算法[J]. 工程科学学报, 2017, 39(8):1244-1253 WU Sen, LIU Lu, LU Dan. Imbalanced data ensemble classification based on cluster-based under-sampling algorithm[J]. Chinese journal of engineering, 2017, 39(8):1244-1253
[6] 陈旭, 刘鹏鹤, 孙毓忠, 等. 面向不均衡医学数据集的疾病预测模型研究[J]. 计算机学报, 2019, 42(3):596-609 CHEN Xu, LIU Penghe, SUN Yuzhong, et al. Research on disease prediction models based on imbalanced medical data sets[J]. Chinese journal of computers, 2019, 42(3):596-609
[7] JIAN Chuanxia, GAO Jian, AO Yinhui. A new sampling method for classifying imbalanced data based on support vector machine ensemble[J]. Neurocomputing, 2016, 193:115-122.
[8] DU Hongle, TENG Shaohua, ZHANG Lin, et al. Support vector machine based on dynamic density equalization[C]//Proceedings of the Second International Conference on Human Centered Computing. Colombo, Sri Lanka, 2016:58-69.
[9] ZHOU Yuhang, ZHOU Zhihua. Large margin distribution learning with cost interval and unlabeled data[J]. IEEE transactions on knowledge and data engineering, 2016, 28(7):1749-1763.
[10] WANG Shuo, MINKU L L, YAO Xin. Resampling-based ensemble methods for online class imbalance learning[J]. IEEE transactions on knowledge and data engineering, 2015, 27(5):1356-1368.
[11] SUN Zhongbin, SONG Qinbao, ZHU Xiaoyan, et al. A novel ensemble method for classifying imbalanced data[J]. Pattern recognition, 2015, 48(5):1623-1637.
[12] GUO Haixiang, LI Yijing, LI Yanan, et al. BPSO-Adaboost-KNN ensemble learning algorithm for multi-class imbalanced data classification[J]. Engineering applications of artificial intelligence, 2016, 49:176-193.
[13] WANG Qi, LUO Zhihao, HUANG Jincai, et al. A novel ensemble method for imbalanced data learning:bagging of extrapolation-SMOTE SVM[J]. Computational intelligence and neuroscience, 2017, 2017:1827016.
[14] POTHARAJU S P, SREEDEVI M. Ensembled rule based classification algorithms for predicting imbalanced kidney disease data[J]. Journal of engineering science and technology review, 2016, 9(5):201-207.
[15] ZHAI Junhai, ZHANG Sufang, WANG Chenxi. The classification of imbalanced large data sets based on MapReduce and ensemble of ELM classifiers[J]. International journal of machine learning and cybernetics, 2017, 8(3):1009-1017.
[16] YU Hualong, NI Jun. An improved ensemble learning method for classifying high-dimensional and imbalanced biomedicine data[J]. IEEE/ACM transactions on computational biology and bioinformatics, 2014, 11(4):657-666.
[17] HAQUE M N, NOMAN N, BERRETTA R, et al. Heterogeneous ensemble combination search using genetic algorithm for class imbalanced data classification[J]. PLoS one, 2016, 11(1):e0146116.
[18] WILSON D R, MARTINEZ T R. Improved heterogeneous distance functions[J]. Journal of artificial intelligence research, 1997, 6(1):1-34.
[19] ZHANG Yishi, YANG Anrong, XIONG Chan, et al. Feature selection using data envelopment analysis[J]. Knowledge-based systems, 2014, 64:70-80.
相似文献/References:
[1]秦娅,申国伟,余红星.基于Hadoop的大规模网络安全实体识别方法[J].智能系统学报,2019,14(5):1017.[doi:10.11992/tis.201809024]
 QIN Ya,SHEN Guowei,YU Hongxing.Large-scale network security entity recognition method based on Hadoop[J].CAAI Transactions on Intelligent Systems,2019,14():1017.[doi:10.11992/tis.201809024]

备注/Memo

收稿日期:2018-07-22。
基金项目:陕西省自然科学基础研究计划项目(2015JM6347);陕西省教育厅科技计划项目(15JK1218);商洛学院科学与技术项目(18sky014);商洛学院科技创新团队建设项目(18SCX002);商洛学院重点学科建设项目,学科名:数学”.
作者简介:张燕,女,1977年生,讲师,主要研究方向为模式识别、机器学习。主持和参加省部级及企业合作项目6项。发表学术论文10余篇。;杜红乐,男,1979年生,副教授,主要研究方向为数据挖掘、机器学习。主持或承担校级以上项目12项。发表学术论文30余篇,被EI检索10余篇。
通讯作者:杜红乐.E-mail:dhl5597@163.com

更新日期/Last Update: 2019-08-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com