[1]洪雁飞,魏本征,刘川,等.基于深度学习的椎间孔狭窄自动多分级研究[J].智能系统学报,2019,14(4):708-715.[doi:10.11992/tis.201806015]
HONG Yanfei,WEI Benzheng,LIU Chuan,et al.Deep learning based automatic multi-classification algorithm for intervertebral foraminal stenosis[J].CAAI Transactions on Intelligent Systems,2019,14(4):708-715.[doi:10.11992/tis.201806015]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
14
期数:
2019年第4期
页码:
708-715
栏目:
学术论文—机器学习
出版日期:
2019-07-02
- Title:
-
Deep learning based automatic multi-classification algorithm for intervertebral foraminal stenosis
- 作者:
-
洪雁飞1,2, 魏本征1,2, 刘川2, 韩忠义1,2, 李天阳1,2
-
1. 山东中医药大学 理工学院, 山东 济南 250355;
2. 山东中医药大学 计算医学实验室, 山东 济南 250355
- Author(s):
-
HONG Yanfei1,2, WEI Benzheng1,2, LIU Chuan2, HAN Zhongyi1,2, LI Tianyang1,2
-
1. College of Science and Technology, Shandong University of Traditional Chinese Medicine, Ji’nan 250355, China;
2. Computational Medicine Lab, Shandong University of Traditional Chinese Medicine, Ji’nan 250355, China
-
- 关键词:
-
椎间孔狭窄; 自动分级; 机器学习; 深度学习; 特征提取; 监督训练; 迁移学习; 过拟合
- Keywords:
-
intervertebral foraminal stenosis; automatic grade; machine learning; deep learning; feature extraction; supervised training; transfer learning; over fitting
- 分类号:
-
TP311
- DOI:
-
10.11992/tis.201806015
- 摘要:
-
椎间孔狭窄症的术前定性分级诊断对临床医生治疗策略的制定和患者健康恢复至关重要,但目前该方面临床上仍然存在很多问题,并且缺乏相关的研究和行之有效的方法用于辅助临床医生诊断。因此,为提高计算机辅助椎间孔狭窄症诊断准确率以及医生工作效率,本文提出一种基于深度学习的椎间孔狭窄图像自动分级算法。从人体矢状切脊柱核磁共振图像中提取脊柱椎间孔图像,并做图像预处理;设计一种监督式深度卷积神经网络模型,用于实现脊柱椎间孔图像数据集的自动多分级;利用迁移学习方法,解决深度学习算法在小样本数据集上的过拟合问题。实验结果表明,本文算法在脊柱椎间孔图像数据集上的分类精确度可达到87.5%以上,且其具有良好的鲁棒性和泛化能力。
- Abstract:
-
Preoperative qualitative diagnosis of intervertebral foraminal stenosis is essential for the formulation of clinician treatment strategies and patients’ health recovery. However, there are still many clinical challenges in this aspect and a lack of relevant research and proven methods to assist clinicians in diagnosis. Therefore, a deep learning-based automatic classification algorithm is proposed in this study to improve the diagnosis accuracy and the efficiency. First, we extracted the spinal foramen images from the sagittal spine MRI image, and then these images were preprocessed. Second, a supervised deep convolutional neural network model was designed to achieve automatic multi-classification for the datasets of the intervertebral foraminal stenosis. Finally, we used the transfer learning to optimize the overfitting problem of the deep learning algorithm in the small sample dataset. The experimental results show that the classification accuracy of this algorithm on the dataset of spinal foramen was 87.5%, and it has good robustness and generalization performance.
备注/Memo
收稿日期:2018-06-05。
基金项目:国家自然科学基金项目(U1201258,61572300);山东省自然科学基金项目(ZR2015FM010);山东高等学校科技计划项目(J15LN20);山东省医药卫生科技发展计划项目(2016WSO577);山东省中医药科技发展计划项目(2017-001).
作者简介:洪雁飞,女,1994年生,硕士研究生,主要研究方向为医学影像分析和机器学习算法;魏本征,男,1976年生,教授,主要研究方向为医学图像处理、机器学习、计算医学和医学信息工程。发表学术论文60余篇;刘川,男,1972年生,副教授,主要研究方向为中医骨伤学和中医药文化社会学。
通讯作者:魏本征.E-mail:wbz99@sina.com
更新日期/Last Update:
2019-08-25