[1]魏文戈,谭晓阳.密集堆叠下的高相似度木块横截面检测[J].智能系统学报,2019,14(4):642-649.[doi:10.11992/tis.201806001]
WEI Wenge,TAN Xiaoyang.Highly similar wood blocks detection under dense stacking[J].CAAI Transactions on Intelligent Systems,2019,14(4):642-649.[doi:10.11992/tis.201806001]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
14
期数:
2019年第4期
页码:
642-649
栏目:
学术论文—机器学习
出版日期:
2019-07-02
- Title:
-
Highly similar wood blocks detection under dense stacking
- 作者:
-
魏文戈1,2, 谭晓阳1,2
-
1. 南京航空航天大学 计算机科学与技术学院, 江苏 南京 211106;
2. 软件新技术与产业化协同创新中心, 江苏 南京 211106
- Author(s):
-
WEI Wen’ge1,2, TAN Xiaoyang1,2
-
1. College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China;
2. Collaborative Innovation Center of Novel Software Technology and Industrialization, Nanjing 211106, China
-
- 关键词:
-
密集堆叠; 高相似度; 木块横截面; 检测; 木块生产交易; 损失函数; 鲁棒性
- Keywords:
-
dense stacking; highly similar; cross section of wood; detection; production of wood block; loss function; robustness
- 分类号:
-
TP181
- DOI:
-
10.11992/tis.201806001
- 摘要:
-
快速有效地检测和获取木块横截面信息,是提升木块生产交易效率的关键。由于木块往往被密集堆叠、木块横截面相似度高且边界不明显,给检测木块横截面信息带来了较大的挑战。针对密集堆叠下的高相似度木块横截面检测困难,本文提出了简单高效的Wood R-CNN网络模型,通过改进模型的损失函数和非极大值抑制算法来提升检测精度,简化网络结构和改进特征金字塔网络来保证检测速度。实验证明:该模型可在密集堆叠情况下精确地检测高相似度木块横截面,检测速度较快且鲁棒性良好,可实际运用于木块生产和交易中。
- Abstract:
-
Quick and effective detection of wood blocks cross section and acquisition of the required information are the key to improving the efficiency of wood block production and transactions. However, since wood blocks are often densely stacked, their cross sections have high similarity, while their boundaries are not obvious; this poses a great challenge in detecting the cross sections and acquiring the required information. Considering the difficulty in detecting the cross section of highly similar wood blocks under dense stacking, a simple and efficient wood R-CNN network model is proposed in this paper. The detection accuracy is increased by improving the model loss function and the non-maximum suppression algorithm, and detection speed is ensured by simplifying the network structure and modifying the feature pyramid network. A series of experiments prove that the algorithm model can precisely detect the cross sections of blocks with high similarity under dense stacking. Moreover, it can guarantee fast detection speed and good robustness and can be actually used in the production and transaction of wood blocks.
备注/Memo
收稿日期:2018-06-01。
基金项目:国家自然科学基金项目(61672280,61373060,61732006).
作者简介:魏文戈,男,1993年生,硕士研究生,主要研究方向为图像识别和深度学习;谭晓阳,男,1971年生,教授,主要研究方向为模式识别、计算机视觉和机器学习。中国计算机学会会员,中国计算机学会计算机视觉专业组委员,中国计算机学会人工智能与模式识别专委会委员,江苏省计算机协会人工智能专委会委员。主持多项科研项目,曾获国际电气与电子工程师协会信号处理协会最佳论文奖、教育部自然科学奖二等奖、国家自然科学奖二等奖、教育部自然科学奖一等奖、国际学术期刊《Pattern Recognition》 2006-2010 年度高引用论文奖等。发表学术论文50余篇,被引用近5000次。
通讯作者:谭晓阳.E-mail:x.tan@nuaa.edu.cn
更新日期/Last Update:
2019-08-25