[1]刘晓燕,陈希,郭茂祖,等.一种预测miRNA与疾病关联关系的矩阵分解算法[J].智能系统学报,2018,13(6):897-904.[doi:10.11992/tis.201805043]
 LIU Xiaoyan,CHEN Xi,GUO Maozu,et al.A matrix factorization method for predicting miRNA-disease association[J].CAAI Transactions on Intelligent Systems,2018,13(6):897-904.[doi:10.11992/tis.201805043]
点击复制

一种预测miRNA与疾病关联关系的矩阵分解算法

参考文献/References:
[1] WANG Qianghu, SUN Jie, ZHOU Meng, et al. A novel network-based method for measuring the functional relationship between gene sets[J]. Bioinformatics, 2011, 27(11):1521-1528.
[2] LV Sali, LI Yan, WANG Qianghu, et al. A novel method to quantify gene set functional association based on gene ontology[J]. Journal of the royal society interface, 2012, 9(70):1063-1072.
[3] HRISTOVSKI D, FRIEDMAN C, RINDFLESCH T C, et al. Exploiting semantic relations for literature-based discovery[J]. AMIA annual symposium proceedings, 2006, 2006:349-353.
[4] KARP X, AMBROS V. Encountering microRNAs in cell fate signaling[J]. Science, 2005, 310(5752):1288-1289.
[5] CHENG A M, BYROM M W, SHELTON J, et al. Antisense inhibition of human miRNAs and indications for an involvement of miRNA in cell growth and apoptosis[J]. Nucleic acids research, 2005, 33(4):1290-1297.
[6] MISKA E A. How microRNAs control cell division, differentiation and death[J]. Current opinion in genetics and development, 2005, 15(5):563-568.
[7] XU Peizhang, GUO Ming, HAY B A. MicroRNAs and the regulation of cell death[J]. Trends in genetics, 2004, 20(12):617-624.
[8] YOU Zhuhong, HUANG Zhian, ZHU Zexuan, et al. PBMDA:a novel and effective path-based computational model for miRNA-disease association prediction[J]. PLoS computational biology, 2017, 13(3):e1005455.
[9] SHI Hongbo, ZHANG Guangde, ZHOU Meng, et al. Integration of multiple genomic and phenotype data to infer novel miRNA-disease associations[J]. PLoS one, 2016, 11(2):e0148521.
[10] JIANG Qinghua, HAO Yangyang, WANG Guohua, et al. Prioritization of disease microRNAs through a human phenome-microRNAome network[J]. BMC systems biology, 2010, 4(S1):S2.
[11] JIANG Qinghua, WANG Guohua, WANG Yadong. An approach for prioritizing disease-related microRNAs based on genomic data integration[C]//Proceedings of the 3rd International Conference on Biomedical Engineering and Informatics. Yantai, China, 2010:2270-2274.
[12] CHEN Xing, LIU Mingxi, YAN Guiying. RWRMDA:predicting novel human microRNA-disease associations[J]. Molecular biosystems, 2012, 8(10):2792-2798.
[13] CHEN Hailin, ZHANG Zuping. Similarity-based methods for potential human microRNA-disease association prediction[J]. BMC medical genomics, 2013, 6:12.
[14] SHI Hongbo, XU Juan, ZHANG Guangde, et al. Walking the interactome to identify human miRNA-disease associations through the functional link between miRNA targets and disease genes[J]. BMC systems biology, 2013, 7:101.
[15] XUAN Ping, HAN Ke, GUO Maozu, et al. Prediction of microRNAs associated with human diseases based on weighted k most similar neighbors[J]. PLoS one, 2013, 8(8):e70204.
[16] XU Chaohan, PING Yanyan, LI Xiang, et al. Prioritizing candidate disease miRNAs by integrating phenotype associations of multiple diseases with matched miRNA and mRNA expression profiles[J]. Molecular biosystems, 2014, 10(11):2800-2809.
[17] M?RK S, PLETSCHER-FRANKILD S, PALLEJA CARO A, et al. Protein-driven inference of miRNA-disease associations[J]. Bioinformatics, 2014, 30(3):392-397.
[18] PASQUIER C, GARDèS J. Prediction of miRNA-disease associations with a vector space model[J]. Scientific reports, 2016, 6:27036.
[19] SUN Dongdong, LI Ao, FENG Huanqing, et al. NTSMDA:prediction of miRNA-disease associations by integrating network topological similarity[J]. Molecular biosystems, 2016, 12(7):2224-2232.
[20] LI Xia, XU Juan, LI Yongsheng. Prioritizing candidate disease miRNAs by topological features in the miRNA-target dysregulated network[M]//AZMI A S. Systems Biology in Cancer Research and Drug Discovery. Netherlands:Springer, 2012:289-306.
[21] JIANG Qinghua, WANG Guohua, JIN Shuilin, et al. Predicting human microRNA-disease associations based on support vector machine[J]. International journal of data mining and bioinformatics, 2013, 8(3):282-293.
[22] CHEN Xing, YAN Guiying. Semi-supervised learning for potential human microRNA-disease associations inference[J]. Scientific reports, 2014, 4:5501.
[23] SHEN Zhen, ZHANG Youhua, HAN K, et al. miRNA-disease association prediction with collaborative matrix factorization[J]. Complexity, 2017, 2017:2498957.
[24] WANG Dong, WANG Juan, LU Ming, et al. Inferring the human microRNA functional similarity and functional network based on microRNA-associated diseases[J]. Bioinformatics, 2010, 26(13):1644-1650.

备注/Memo

收稿日期:2018-05-27。
基金项目:国家自然科学基金项目(61671189,61571163,61532014,91735306);国家重点研发计划课题(2016YFC0901902).
作者简介:刘晓燕,女,1963年生,副研究员,博士,主要研究方向为生物信息学、数据挖掘;陈希,男,1995年生,硕士研究生,主要研究方向为生物信息学;郭茂祖,男,1966年生,教授,博士生导师,博士,主要研究方向为机器学习、智慧城市、生物信息学。
通讯作者:郭茂祖.E-mail:guomaozu@bucea.edu.cn

更新日期/Last Update: 2018-12-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com