[1]程康明,熊伟丽.一种双优选的半监督回归算法[J].智能系统学报,2019,14(4):689-696.[doi:10.11992/tis.201805010]
CHENG Kangming,XIONG Weili.A dual-optimal semi-supervised regression algorithm[J].CAAI Transactions on Intelligent Systems,2019,14(4):689-696.[doi:10.11992/tis.201805010]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
14
期数:
2019年第4期
页码:
689-696
栏目:
学术论文—机器学习
出版日期:
2019-07-02
- Title:
-
A dual-optimal semi-supervised regression algorithm
- 作者:
-
程康明1, 熊伟丽1,2
-
1. 江南大学 物联网工程学院, 江苏 无锡 214122;
2. 江南大学 轻工过程先进控制教育部重点实验室, 江苏 无锡 214122
- Author(s):
-
CHENG Kangming1, XIONG Weili1,2
-
1. School of Internet of Things Engineering, Jiangnan University, Wuxi 214122, China;
2. Key Laboratory of Advanced Process Control for Light Industry (Ministry of Education), Jiangnan University, Wuxi 214122, China
-
- 关键词:
-
无标签样本; 优选; 半监督回归; 样本密集区中心; 相似度; 高斯过程回归; 辅学习器; 主学习器; 脱丁烷塔过程; 预测性能
- Keywords:
-
unlabeled samples; select; semi-supervised regression; center of sample dense area; similarity; Gaussian process regression; auxiliary learner; main learner; debutanizer process; prediction performance
- 分类号:
-
TP274
- DOI:
-
10.11992/tis.201805010
- 摘要:
-
针对一些工业过程中存在的有标签样本少,而传统的半监督学习无法保证对无标签样本准确预测的问题,提出一种双优选的半监督回归算法。首先,确定有标签样本密集区中心,并计算无标签样本与该中心的相似度,实现对无标签样本的优选,同时根据有标签样本间相似度优选有标签样本;然后,利用高斯过程回归方法对选出的有标签样本建立辅学习器,以对优选出的无标签样本预测标签;最后,利用这些伪标签样本提升主学习器的预测效果。通过数值例子以及实际脱丁烷塔过程数据进行建模仿真,证明了所提方法在有标签样本较少的情况下有良好的预测性能。
- Abstract:
-
Aiming at the problem that there are few label samples in some industrial processes and that the traditional semi-supervised learning cannot guarantee the accurate prediction of unlabeled samples, a dual-optimal semi-supervised regression algorithm is proposed in this paper. First, in this method, the center of the label-concentrated area is found, and the similarity between unlabeled samples and the center is calculated, and therefore, the unlabeled samples are optimized. At the same time, the labeled samples are selected according to similarity between the unlabeled samples and the center of the dense area. Second, by employing the Gaussian process regression method, an auxiliary learner is established according to the selected labeled sample, and then the labels of the selected unlabeled samples are predicted by the auxiliary learner. Finally, the performance of the main learner is improved with these pseudo-label samples. Through a simulation of the numerical case and the actual debutanizer process, the proposed method is verified to have a good prediction performance when the labeled samples are few.
备注/Memo
收稿日期:2018-05-09。
基金项目:国家自然科学基金项目(61773182,60712228);江苏省自然科学基金项目(BK20170198).
作者简介:程康明,男,1993年生,硕士研究生,主要研究方向为工业过程建模;熊伟丽, 女,1978年生,教授,博士,主要研究方向为复杂工业过程建模及优化、智能优化算法及应用。主持国家自然科学基金面上项目、江苏省产学研等纵向项目8项;参与国家863计划、重点研发计划等多项。发表研究学术论文60余篇。
通讯作者:熊伟丽.E-mail:greenpre@163.com
更新日期/Last Update:
2019-08-25