[1]张毅,刘芳君,胡磊.结合MPGA-RBFNN的一般机器人逆运动学求解[J].智能系统学报,2019,14(1):165-170.[doi:10.11992/tis.201805005]
 ZHANG Yi,LIU Fangjun,HU Lei.A general robot inverse kinematics solution based on MPGA-RBFNN[J].CAAI Transactions on Intelligent Systems,2019,14(1):165-170.[doi:10.11992/tis.201805005]
点击复制

结合MPGA-RBFNN的一般机器人逆运动学求解

参考文献/References:
[1] FARIA C, FERREIRA F, ERLHAGEN W, et al. Position-based kinematics for 7-DoF serial manipulators with global configuration control, joint limit and singularity avoidance[J]. Mechanism and machine theory, 2018, 121:317-334.
[2] 林阳, 赵欢, 丁汉. 基于多种群遗传算法的一般机器人逆运动学求解[J]. 机械工程学报, 2017, 53(3):1-8 LIN Yang, ZHAO Huan, DING Han. Solution of inverse kinematics for general robot manipulators based on multiple population genetic algorithm[J]. Journal of mechanical engineering, 2017, 53(3):1-8
[3] LIU Yuan, WANG Daqing, SUN Jian, et al. Geometric approach for inverse kinematics analysis of 6-Dof serial robot[C]//IEEE International Conference on Information and Automation. Lijiang, China:IEEE, 2015:852–855.
[4] ZANG Wenke, REN Liyan, ZHANG Wenqian, et al. A cloud model based DNA genetic algorithm for numerical optimization problems[J]. Future generation computer systems, 2018, 81:465-477.
[5] ALSHRAIDEH M A. Multiple-population genetic algorithm for solving min-max optimization problems[J]. International review on computers and software, 2015, 10(1):9-19.
[6] 林明, 王冠, 林永才. 改进的遗传算法在机器人逆解中的应用[J]. 江苏科技大学学报(自然科学版), 2012, 26(4):370-375 LIN Ming, WANG Guan, LIN Yongcai. Robot inverse kinematics based on improved genetic algorithm[J]. Journal of Jiangsu university of science and technology (natural science edition), 2012, 26(4):370-375
[7] AYYILDIZ M, ÇETINKAYA K. Comparison of four different heuristic optimization algorithms for the inverse kinematics solution of a real 4-DOF serial robot manipulator[J]. Neural computing and applications, 2016, 27(4):825-836.
[8] STARKE S, HENDRICH N, MAGG S, et al. An efficient hybridization of Genetic Algorithms and Particle Swarm Optimization for inverse kinematics[C]//Proceedings of the 2016 IEEE International Conference on Robotics and Biomimetics. Qingdao, China:IEEE, 2017:1782–1789.
[9] HALALI M A, AZARI V, ARABLOO M, et al. Application of a radial basis function neural network to estimate pressure gradient in water-oil pipelines[J]. Journal of the Taiwan institute of chemical engineers, 2016, 58:189-202.
[10] CHIDDARWAR S S, BABU N R. Comparison of RBF and MLP neural networks to solve inverse kinematic problem for 6R serial robot by a fusion approach[J]. Engineering applications of artificial intelligence, 2010, 23(7):1083-1092.
[11] ZUBIZARRETA A, LARREA M, IRIGOYEN E, et al. Real time direct kinematic problem computation of the 3PRS robot using neural networks[J]. Neurocomputing, 2017, 271:104-114.
[12] TOSHANI H, FARROKHI M. Real-time inverse kinematics of redundant manipulators using neural networks and quadratic programming:a Lyapunov-based approach[J]. Robotics and autonomous systems, 2014, 62(6):766-781.
[13] KÖKER R. A genetic algorithm approach to a neural-network-based inverse kinematics solution of robotic manipulators based on error minimization[J]. Information sciences, 2013, 222:528-543.
[14] JIA Weikuan, ZHAO Dean, DING Ling. An optimized RBF neural network algorithm based on partial least squares and genetic algorithm for classification of small sample[J]. Applied soft computing, 2016, 48:373-384.
[15] ZAPLANA I, BASANEZ L. A novel closed-form solution for the inverse kinematics of redundant manipulators through workspace analysis[J]. Mechanism and machine theory, 2018, 121:829-843.
[16] 赵建强, 刘满禄, 王姮. 基于PSO优化BP神经网络的逆运动学求解研究[J]. 自动化与仪表, 2016, 31(11):1-6 ZHAO Jianqiang, LIU Manlu, WANG Heng. Research on inverse kinematics solution of BP neural network based on PSO optimization[J]. Automation and instrumentation, 2016, 31(11):1-6
[17] 乔俊飞, 安茹, 韩红桂. 基于相对贡献指标的自组织RBF神经网络的设计[J]. 智能系统学报, 2018, 13(2):159-167 QIAO Junfei, AN Ru, HAN Honggui. Design of self-organizing RBF neural network based on relative contribution index[J]. CAAI transactions on intelligent systems, 2018, 13(2):159-167
相似文献/References:
[1]张艳霞,陈丹琪,韩莹,等.基宽灵敏度分析的径向基神经网络代理模型[J].智能系统学报,2014,9(2):259.[doi:10.3969/j.issn.1673-4785.201309009]
 ZHANG Yanxia,CHEN Danqi,HAN Ying,et al.Surrogate model of radial basis function networks based on width factor sensitivity analysis[J].CAAI Transactions on Intelligent Systems,2014,9():259.[doi:10.3969/j.issn.1673-4785.201309009]
[2]许敏,史荧中,葛洪伟,等.一种具有迁移学习能力的RBF-NN算法及其应用[J].智能系统学报,2018,13(6):959.[doi:10.11992/tis.201705021]
 XU Min,SHI Yingzhong,GE Hongwei,et al.A RBF-NN algorithm with transfer learning ability and its application[J].CAAI Transactions on Intelligent Systems,2018,13():959.[doi:10.11992/tis.201705021]
[3]吴启龙,朱齐丹.基于线性自抗扰控制的纵向舰载机直接升力全自动着舰控制[J].智能系统学报,2024,19(1):142.[doi:10.11992/tis.202304047]
 WU Qilong,ZHU Qidan.Direct lift fully-automatic landing control of longitudinal carrier-based aircraft on basis of linear active disturbance rejection control[J].CAAI Transactions on Intelligent Systems,2024,19():142.[doi:10.11992/tis.202304047]

备注/Memo

收稿日期:2018-05-07。
基金项目:国家自然科学基金项目(51775076,51604056).
作者简介:张毅,男,1966年生,教授,主要研究方向为智能机器人、数据融合、信息无障碍技术。主持国家、省部级以及产学研等各种项目10余项。发表学术论文100余篇,被SCI、EI和ISTP收录30余篇。出版著作5部;刘芳君,女,1990年生,硕士研究生,主要研究方向为工业机器人轨迹规划;胡磊,男,1994年生,硕士研究生,主要研究方向为工业机器人运动学控制。
通讯作者:刘芳君.E-mail:lfjyx163@163.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com