[1]余鹰,王乐为,吴新念,等.基于改进卷积神经网络的多标记分类算法[J].智能系统学报,2019,14(3):566-574.[doi:10.11992/tis.201804056]
 YU Ying,WANG Lewei,WU Xinnian,et al.A multi-label classification algorithm based on an improved convolutional neural network[J].CAAI Transactions on Intelligent Systems,2019,14(3):566-574.[doi:10.11992/tis.201804056]
点击复制

基于改进卷积神经网络的多标记分类算法

参考文献/References:
[1] TROHIDIS K, TSOUMAKAS G, KALLIRIS G, et al. Multilabel classification of music into emotions[C]//Proceedings of 2008 International Conference on Music Information Retrieval (ISMIR 2008). Philadelphia, USA, 2008:325-330.
[2] WU Baoyuan, LYU S, HU Baoguang, et al. Multi-label learning with missing labels for image annotation and facial action unit recognition[J]. Pattern recognition, 2015, 48(7):2279-2289.
[3] JIANG J Q, MCQUAY L J. Predicting protein function by multi-label correlated semi-supervised learning[J]. IEEE/ACM transactions on computational biology and bioinformatics, 2012, 9(4):1059-1069.
[4] OZONAT K, YOUNG D. Towards a universal marketplace over the web:statistical multi-label classification of service provider forms with simulated annealing[C]//Proceedings of the 15th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. Paris, France, 2009:1295-1304.
[5] GONG Y, JIA Y, LEUNG T, et al. Deep convolutional ranking for multilabel image annotation[C]. 2nd International Conference on Learning Representations, ICLR 2014. Banff, Canada, 2014:1312-1320.
[6] ZHANG Minling, ZHOU Zhihua. A review on multi-label learning algorithms[J]. IEEE transactions on knowledge and data engineering, 2014, 26(8):1819-1837.
[7] LUACES O, DíEZ J, BARRANQUERO J, et al. Binary relevance efficacy for multilabel classification[J]. Progress in artificial intelligence, 2012, 1(4):303-313.
[8] READ J, PFAHRINGER B, HOLMES G. Multi-label classification using ensembles of pruned sets[C]//ICDM’08. Eighth IEEE International Conference on Data Mining. Pisa, Italy, 2008:995-1000.
[9] WAN Shupeng, XU Jianhua. A multi-label classification algorithm based on triple class support vector machine[C]//Proceedings of 2007 International Conference on Wavelet Analysis and Pattern Recognition. Beijing, China, 2008:1447-1452.
[10] 张敏灵. 一种新型多标记懒惰学习算法[J]. 计算机研究与发展, 2012, 49(11):2271-2282 ZHANG Minling. An improved multi-label lazy learning approach[J]. Journal of computer research and development, 2012, 49(11):2271-2282
[11] ZHANG Mimling. ML-RBF:RBF neural networks for multi-label learning[J]. Neural processing letters, 2009, 29(2):61-74.
[12] WANG Jiang, YANG Yi, MAO Junhua, et al. CNN-RNN:a unified framework for multi-label image classification[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016:2285-2294.
[13] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. ImageNet classification with deep convolutional neural networks[C]//Proceedings of the 25th International Conference on Neural Information Processing Systems. Lake Tahoe, USA, 2012:1097-1105.
[14] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[C]//3rd International Conference on Learning Representations, ICLR 2015. San Diego, USA, 2015:1409-1422.
[15] DAI Wenyuan, XUE Guirong, YANG Qiang, et al. Co-clustering based classification for out-of-domain documents[C]//Proceedings of the 13th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining. San Jose, USA, 2007:210-219.
[16] ZHUO H H, YANG Qiang. Action-model acquisition for planning via transfer learning[J]. Artificial intelligence, 2014, 212:80-103.
[17] DENG Jia, DONG Wei, SOCHER R, et al. ImageNet:a large-scale hierarchical image database[C]//Proceedings of 2009 IEEE Conference on Computer Vision and Pattern Recognition. Miami, USA, 2009:248-255.
[18] SZEGEDY C, VANHOUCKE V, IOFFE S, et al. Rethinking the Inception Architecture for Computer Vision[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016:2818-2826.
[19] EVERINGHAM M, VAN GOOL L, WILLIAMS C K I, et al. The pascal visual object classes (VOC) challenge[J]. International journal of computer vision, 2010, 88(2):303-338.
[20] SHELHAMER E, LONG J, DARRELL T. Fully convolutional networks for semantic segmentation[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(4):640-651.
[21] ZHANG Chenlin, LUO Jianhao, WEI Xiushen, et al. In defense of fully connected layers in visual representation transfer[C]//Proceedings of the 18th Pacific-Rim Conference on Multimedia on Advances in Multimedia Information Processing. Harbin, China, 2017:807-817.
[22] HARZALLAH H, JURIE F, SCHMID C. Combining efficient object localization and image classification[C]//Proceedings of 2009 IEEE International Conference on Computer Vision. Kyoto, Japan, 2009:237-244.
[23] PERRONNIN F, SáNCHEZ J, MENSINK T. Improving the fisher kernel for large-scale image classification[C]//Proceedings of the 11th European Conference on Computer Vision. Heraklion, Greece, 2010:143-156.
[24] YANG Jingjing, LI Yuanning, TIAN Yonghong, et al. Group-sensitive multiple kernel learning for object categorization[C]//Proceedings of 2009 IEEE International Conference on Computer Vision. Kyoto, Japan, 2009:436-443.
[25] OQUAB M, BOTTOU L, LAPTEV I, et al. Learning and transferring mid-level image representations using convolutional neural networks[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA, 2014:1717-1724.
[26] WEI Y, XIA W, LIN M, et al. HCP:a flexible CNN framework for multi-label image classification[J]. IEEE transactions on pattern analysis and machine intelligence, 2016, 38(9):1901-1907.
相似文献/References:
[1]刘杨磊,梁吉业,高嘉伟,等.基于Tri-training的半监督多标记学习算法[J].智能系统学报,2013,8(5):439.[doi:10.3969/j.issn.1673-4785.201305033]
 LIU Yanglei,LIANG Jiye,GAO Jiawei,et al.Semi-supervised multi-label learning algorithm based on Tri-training[J].CAAI Transactions on Intelligent Systems,2013,8():439.[doi:10.3969/j.issn.1673-4785.201305033]
[2]殷瑞,苏松志,李绍滋.一种卷积神经网络的图像矩正则化策略[J].智能系统学报,2016,11(1):43.[doi:10.11992/tis.201509018]
 YIN Rui,SU Songzhi,LI Shaozi.Convolutional neural network’s image moment regularizing strategy[J].CAAI Transactions on Intelligent Systems,2016,11():43.[doi:10.11992/tis.201509018]
[3]龚震霆,陈光喜,任夏荔,等.基于卷积神经网络和哈希编码的图像检索方法[J].智能系统学报,2016,11(3):391.[doi:10.11992/tis.201603028]
 GONG Zhenting,CHEN Guangxi,REN Xiali,et al.An image retrieval method based on a convolutional neural network and hash coding[J].CAAI Transactions on Intelligent Systems,2016,11():391.[doi:10.11992/tis.201603028]
[4]刘帅师,程曦,郭文燕,等.深度学习方法研究新进展[J].智能系统学报,2016,11(5):567.[doi:10.11992/tis.201511028]
 LIU Shuaishi,CHENG Xi,GUO Wenyan,et al.Progress report on new research in deep learning[J].CAAI Transactions on Intelligent Systems,2016,11():567.[doi:10.11992/tis.201511028]
[5]师亚亭,李卫军,宁欣,等.基于嘴巴状态约束的人脸特征点定位算法[J].智能系统学报,2016,11(5):578.[doi:10.11992/tis.201602006]
 SHI Yating,LI Weijun,NING Xin,et al.A facial feature point locating algorithmbased on mouth-state constraints[J].CAAI Transactions on Intelligent Systems,2016,11():578.[doi:10.11992/tis.201602006]
[6]宋婉茹,赵晴晴,陈昌红,等.行人重识别研究综述[J].智能系统学报,2017,12(6):770.[doi:10.11992/tis.201706084]
 SONG Wanru,ZHAO Qingqing,CHEN Changhong,et al.Survey on pedestrian re-identification research[J].CAAI Transactions on Intelligent Systems,2017,12():770.[doi:10.11992/tis.201706084]
[7]杨晓兰,强彦,赵涓涓,等.基于医学征象和卷积神经网络的肺结节CT图像哈希检索[J].智能系统学报,2017,12(6):857.[doi:10.11992/tis.201706035]
 YANG Xiaolan,QIANG Yan,ZHAO Juanjuan,et al.Hashing retrieval for CT images of pulmonary nodules based on medical signs and convolutional neural networks[J].CAAI Transactions on Intelligent Systems,2017,12():857.[doi:10.11992/tis.201706035]
[8]王科俊,赵彦东,邢向磊.深度学习在无人驾驶汽车领域应用的研究进展[J].智能系统学报,2018,13(1):55.[doi:10.11992/tis.201609029]
 WANG Kejun,ZHAO Yandong,XING Xianglei.Deep learning in driverless vehicles[J].CAAI Transactions on Intelligent Systems,2018,13():55.[doi:10.11992/tis.201609029]
[9]莫凌飞,蒋红亮,李煊鹏.基于深度学习的视频预测研究综述[J].智能系统学报,2018,13(1):85.[doi:10.11992/tis.201707032]
 MO Lingfei,JIANG Hongliang,LI Xuanpeng.Review of deep learning-based video prediction[J].CAAI Transactions on Intelligent Systems,2018,13():85.[doi:10.11992/tis.201707032]
[10]王成济,罗志明,钟准,等.一种多层特征融合的人脸检测方法[J].智能系统学报,2018,13(1):138.[doi:10.11992/tis.201707018]
 WANG Chengji,LUO Zhiming,ZHONG Zhun,et al.Face detection method fusing multi-layer features[J].CAAI Transactions on Intelligent Systems,2018,13():138.[doi:10.11992/tis.201707018]

备注/Memo

收稿日期:2018-04-26。
基金项目:国家自然科学基金项目(61563016,61603404,61462037,61663002);江西省教育厅科技项目(GJJ150546);江西省自然科学基金项目(2018BAB202023).
作者简介:余鹰,女,1979年生,副教授,博士,主要研究方向为多标记学习、计算机视觉、粒计算;王乐为,男,1993年生,硕士研究生,主要研究方向为计算机视觉、深度学习;吴新念,女,1993年生,硕士研究生,主要研究方向为多标记学习、粒计算。
通讯作者:余鹰.E-mail:yuyingjx@163.com

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com