[1]程麟焰,胡峰.基于模糊超网络的知识获取方法研究[J].智能系统学报,2019,14(3):479-490.[doi:10.11992/tis.201804055]
CHENG Linyan,HU Feng.Fuzzy hypernetwork-based knowledge acquisition method[J].CAAI Transactions on Intelligent Systems,2019,14(3):479-490.[doi:10.11992/tis.201804055]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
14
期数:
2019年第3期
页码:
479-490
栏目:
学术论文—知识工程
出版日期:
2019-05-05
- Title:
-
Fuzzy hypernetwork-based knowledge acquisition method
- 作者:
-
程麟焰1,2, 胡峰1,2
-
1. 重庆邮电大学 计算机科学与技术学院, 重庆 400065;
2. 重庆邮电大学 计算智能重庆市重点实验室, 重庆 400065
- Author(s):
-
CHENG Linyan1,2, HU Feng1,2
-
1. College of Computer Science and Technology, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;
2. Chongqing Key Laboratory of Computational Intelligence, Chongqing University of Posts and Telecommunications, Chongqing 400
-
- 关键词:
-
模糊等价; 模糊集; 模糊粗糙集; 三支决策; 超网络; 知识获取方法; 分类算法
- Keywords:
-
fuzzy equivalence; fuzzy set; fuzzy rough set; three-way decision; hypernetworks; knowledge acquisition method; classification algorithm
- 分类号:
-
TP18
- DOI:
-
10.11992/tis.201804055
- 摘要:
-
本文结合模糊粗糙集理论与超网络的相关知识,提出了一种模糊超网络模型。与传统超网络模型的不同之处在于,模糊超网络模型采用了模糊等效关系来代替超网络中的分明等效关系,并在此基础上对超边的生成和演化进行了改进。根据样本的分布将样本集划分成3个区域,即正域、边界域和负域,不同区域的样本按照不同的方式生成超边;根据分类效果将超边集也划分成3个区域,并对不同区域的超边进行相应地替换处理。实验结果表明,在正确率、Precision、Recall等指标上,模糊超网络分类算法具有明显的优势。
- Abstract:
-
Combining the fuzzy rough set theory with the related knowledge on hypernetworks, this paper proposes a fuzzy hypernetwork mode. In comparison with the traditional hypernetwork model, the fuzzy hypernetwork model uses the fuzzy equivalence relationship to replace the distinct equivalence relation in hypernetworks and then improves the generation and evolution of hyperedges on this basis. First, the samples are divided into three regions according to their distribution:positive, boundary, and negative regions. The samples of different regions generate hyperedges in different ways. Second, the hyperedges are also divided into three regions according to their classification results, and the corresponding replacement of hyperedges in different regions is implemented. The experimental results show that the fuzzy hypernetwork classification algorithm presents prominent advantages in terms of accuracy, precision, and recall, thus proving the validity of the classification algorithm.
备注/Memo
收稿日期:2018-04-26。
基金项目:国家自然科学基金项目(61533020,61472056,61309014);重点产业共性关键技术创新专项项目(cstc2017zdcy-zdyf0332,cstc2017zdcy-zdzx0046);重庆市基础与前沿项目(cstc2017jcyjAX0408).
作者简介:程麟焰,女,1993年生,硕士研究生,主要研究方向为机器学习与数据挖掘;胡峰,男,1978年生,教授,博士,主要研究方向为数据挖掘、Rough集和粒计算。发表学术论文40余篇,被SCI、EI检索20余篇。
通讯作者:程麟焰.E-mail:496732322@qq.com
更新日期/Last Update:
1900-01-01