[1]莫宏伟,汪海波.基于Faster R-CNN的人体行为检测研究[J].智能系统学报,2018,13(6):967-973.[doi:10.11992/tis.201801025]
MO Hongwei,WANG Haibo.Research on human behavior detection based on Faster R-CNN[J].CAAI Transactions on Intelligent Systems,2018,13(6):967-973.[doi:10.11992/tis.201801025]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
13
期数:
2018年第6期
页码:
967-973
栏目:
学术论文—机器学习
出版日期:
2018-10-25
- Title:
-
Research on human behavior detection based on Faster R-CNN
- 作者:
-
莫宏伟, 汪海波
-
哈尔滨工程大学 自动化学院, 黑龙江 哈尔滨 150001
- Author(s):
-
MO Hongwei, WANG Haibo
-
College of Automation, Harbin Engineering University, Harbin 150001, China
-
- 关键词:
-
人体行为检测; 更快速区域卷积神经网络; 在线难例挖掘; 深度学习; 目标检测; 卷积神经网络; 批规范化; 迁移学习
- Keywords:
-
human behavior detection; faster R-CNN; OHEM; deep learning; object detection; convolutional neural network; batch normalization; transfer learning
- 分类号:
-
TP181
- DOI:
-
10.11992/tis.201801025
- 摘要:
-
由于人体行为类内差异大,类间相似性大,而且还存在视觉角度与遮挡等问题,使用人工提取特征的方法特征提取难度大并且难以提取有效特征,使得人体行为检测率较低。针对这个问题,本文在物体检测的基础上使用检测效果较好的Faster R-CNN算法来进行人体行为检测,并对Faster R-CNN算法与批量规范化算法和在线难例挖掘算法进行结合,有效利用了深度学习算法实现人体行为检测。对此改进算法进行实验验证,验证的分类和位置精度达到了80%以上,实验结果表明,改进的算法具有识别精度高的特点。
- Abstract:
-
Because of large intra-class difference and large inter-class similarity of human behaviors, as well as problems such as visual angle and occlusion, it is difficult to extract features, especially effective features, using the manual feature extraction method. This results in low accuracy of human behavior detection. To solve this problem, this paper applies a faster region-based convolutional neural network (Faster R-CNN) algorithm, which has a better detection effect, to detect human behavior on the basis of object detection. By combining the Faster-RCNN algorithm with batch normalization algorithm and an online hard example mining algorithm, the deep learning algorithm is effectively utilized to detect human behavior. Experimental results show that the accuracy of classification and position of the improved algorithm exceeds 80%, thereby verifying its high recognition accuracy.
备注/Memo
收稿日期:2018-01-16。
基金项目:国家自然科学基金项目(60035117).
作者简介:莫宏伟,主要研究方向为人工智能、类脑计算、智能机器人。承担完成国家自然科学基金、国防预研等项目17项。中国人工智能学会自然计算与数字城市专业委员会副主任,黑龙江省生物医学工程学会理事。中国生物医学工程学会高级会员。中国计算机学会高级会员。International Journal of Swarm Intelligence Research、《电子学报》编委。IEEE Tran on Industrial Informatics 2018专刊《医疗卫生中的大数据处理》副主编。发表学术论文70余篇。出版专著6部,授权发明专利7项;汪海波,男,1990年生,硕士研究生,主要研究方向为深度学习。
通讯作者:莫宏伟.E-mail:honwei2004@126.com
更新日期/Last Update:
2018-12-25