[1]狄岚,刘海涛,何锐波.一种融合邻域信息的模糊C-均值图像分割算法[J].智能系统学报,2019,14(2):273-280.[doi:10.11992/tis.201712035]
DI Lan,LIU Haitao,HE Ruibo.Fuzzy C-means image segmentation algorithm incorporating neighborhood information[J].CAAI Transactions on Intelligent Systems,2019,14(2):273-280.[doi:10.11992/tis.201712035]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
14
期数:
2019年第2期
页码:
273-280
栏目:
学术论文—机器学习
出版日期:
2019-03-05
- Title:
-
Fuzzy C-means image segmentation algorithm incorporating neighborhood information
- 作者:
-
狄岚, 刘海涛, 何锐波
-
江南大学 数字媒体学院, 江苏 无锡 214122
- Author(s):
-
DI Lan, LIU Haitao, HE Ruibo
-
College of Digital Media, Jiangnan University, Wuxi 214122, China
-
- 关键词:
-
模糊C-均值; 图像分割; 空间信息; 局部信息; 非局部信息; 多测度模型; 邻域隶属度; 惩罚项
- Keywords:
-
fuzzy C-means; image segmentation; spatial information; local information; non-local information; multidimensional model; neighborhood membership degree; penalty term
- 分类号:
-
TP391.4
- DOI:
-
10.11992/tis.201712035
- 摘要:
-
模糊C-均值算法(fuzzy C-means,FCM)对图像噪声敏感,只考虑了图像数值信息而忽略了邻域空间信息,造成最终的图像分割结果不精确。为了克服FCM存在的问题,将图像局部信息与非局部信息融入到多测度模型中,扩充了原本聚类的单一测度。另外将先验概率引入隶属度矩阵中,使得每次迭代前,隶属度矩阵中像素点的邻域信息都被充分考虑,最后添加一个邻域隶属度惩罚项修正聚类结果。实验证明:该算法对噪声鲁棒性强,能够获得较为理想的图像分割效果。
- Abstract:
-
The fuzzy C-means algorithm (FCM) is sensitive to image noise; in addition, it only considers the image numerical information and ignores the neighborhood spatial information, resulting in inaccurate final image segmentation result. To overcome this drawback, an FCM image segmentation algorithm is proposed in which the local information and non-local information of the image are integrated into a multidimensional model, which extends the original single dimension of clustering. In addition, a prior probability is introduced into the membership matrix, so that the neighborhood information of the pixel in the membership matrix is fully considered before each iteration, and then a neighborhood membership penalty is added to correct the clustering result. Finally, a penalty of neighborhood membership degree is used to modify the clustering results. Experimental results demonstrate that the algorithm is robust against noise and achieves an ideal image segmentation effect.
更新日期/Last Update:
2019-04-25