[1]苏晓萍,宋玉蓉.符号网络的局部标注特征与预测方法[J].智能系统学报,2018,13(3):437-444.[doi:10.11992/tis.201710027]
SU Xiaoping,SONG Yurong.Local labeling features and a prediction method for a signed network[J].CAAI Transactions on Intelligent Systems,2018,13(3):437-444.[doi:10.11992/tis.201710027]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
13
期数:
2018年第3期
页码:
437-444
栏目:
学术论文—智能系统
出版日期:
2018-05-05
- Title:
-
Local labeling features and a prediction method for a signed network
- 作者:
-
苏晓萍1, 宋玉蓉2
-
1. 南京工业职业技术学院 计算机与软件学院, 江苏 南京 210046;
2. 南京邮电大学 自动化学院, 江苏 南京 210003
- Author(s):
-
SU Xiaoping1, SONG Yurong2
-
1. School of Computer and Software Engineering, Nanjing Institute of Industry Technology, Nanjing 210046, China;
2. College of Automation, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
-
- 关键词:
-
符号网络; 符号预测; 低秩; 矩阵分解; 标注偏置; 结构平衡理论; 弱结构平衡理论; 地位理论
- Keywords:
-
signed networks; sign prediction; low rank; matrix factorization; signed bias; structural balance theory; weak structural balance theory; status theory
- 分类号:
-
TP399
- DOI:
-
10.11992/tis.201710027
- 摘要:
-
当复杂网络的边具有正、负属性时称为符号网络。符号为正表示两用户间具有相互信任(朋友)关系,相反,符号为负表示不信任(敌对)关系。符号网络中的一个重要研究任务是给定部分观测的符号网络,预测未知符号。分析发现,具有弱结构平衡特征的符号网络,其邻接矩阵呈现全局低秩性,在该特征下链路符号预测问题可以近似表达为低秩矩阵分解问题。但基本低秩模型中,相邻节点间符号标注的局部行为特征未得到充分利用,论文提出了一种带偏置的低秩矩阵分解模型,将邻居节点的出边和入边符号特征作为偏置信息引入模型,以提高符号预测的精度。利用真实符号网络数据进行的实验证明,所提模型能够获得较其他基准算法好的预测效果且算法效率高。
- Abstract:
-
A complex network may be considered as a symbol network when links have a positive or negative sign attribute. In signed social networks, positive links represent a trust (friends) relationship between users. In contrast, negative links indicate distrust (hostility). An important task in a signed network is to define a signed network based on partial observation to predict an unknown symbol. Through analysis, we found that for a signed network with weak structural balance, its adjacent matrix has a global low-rank characteristic and the prediction of the link sign can be approximated as a low-rank matrix factorization. However, in a basic low-rank model, it is difficult to sufficiently utilize the local behavior features for labeling the signs of links between the neighboring nodes. Herein, a low-rank matrix factorization model with bias was proposed. In this model, the sign features of the exit and entry links of a neighboring node were introduced to improve the precision of sign prediction. Experiments based on real data revealed that the low-rank model with bias can obtain better prediction results than other benchmark algorithms and that the proposed algorithm performed with a high efficiency.
备注/Memo
收稿日期:2017-10-30。
基金项目:国家自然科学基金项目(61672298,61373136);教育部人文社会科学研究规划基金项目(17YJAZH071);江苏省高校优秀科技创新团队项目.
作者简介:苏晓萍,女,1971年生,教授,主要研究方向为复杂网络上动态信息传播、信息检索。主持省部级项目2项,发表学术论文10余篇;宋玉蓉,女,1971年生,教授,博士生导师,博士,主要研究方向为复杂网络上动态信息传播、网络控制与优化。主持国家自然科学基金项目2项、教育部人文社科项目1项,发表学术论文30余篇,被SCI、EI收录多篇。
通讯作者:苏晓萍.E-mail:419033424@qq.com.
更新日期/Last Update:
2018-06-25