[1]伍鹏瑛,张建明,彭建,等.多层卷积特征的真实场景下行人检测研究[J].智能系统学报,2019,14(2):306-315.[doi:10.11992/tis.201710019]
 WU Pengying,ZHANG Jianming,PENG Jian,et al.Research on pedestrian detection based on multi-layer convolution feature in real scene[J].CAAI Transactions on Intelligent Systems,2019,14(2):306-315.[doi:10.11992/tis.201710019]
点击复制

多层卷积特征的真实场景下行人检测研究

参考文献/References:
[1] 宋婉茹, 赵晴晴, 陈昌红, 等. 行人重识别研究综述[J]. 智能系统学报, 2017, 12(6):770-780 SONG Wanru, ZHAO Qingqing, CHEN Changhong, et al. Survey on pedestrian re-identification research[J]. CAAI transactions on intelligent systems, 2017, 12(6):770-780
[2] YE Qixiang, LIANG Jixiang, JIAO Jianbin. Pedestrian detection in video images via error correcting output code classification of manifold subclasses[J]. IEEE transactions on intelligent transportation systems, 2012, 13(1):193-202.
[3] LIU Wei, ANGUELOV D, ERHAN D, et al. SSD:single shot multibox detector[C]//Proceedings of 2016 European Conference on Computer Vision. Cham, Germany, 2016:21-37.
[4] DALAL N, TRIGGS B. Histograms of oriented gradients for human detection[C]//IEEE Computer Society Conference on Computer Vision and Pattern Recognition. San Diego, USA, 2005:886-893
[5] 苏松志, 李绍滋, 陈淑媛, 等. 行人检测技术综述[J]. 电子学报, 2012, 40(4):814-820 SU Songhi, LI Shaozi, CHEN Shuyuan, et al. A survey on pedestrian detection[J]. Acta electronica sinica, 2012, 40(4):814-820
[6] LOWE D G. Distinctive image features from scale-invariant keypoints[J]. International journal of computer vision, 2004, 60(2):91-110.
[7] VIOLA P, JONES M. Rapid object detection using a boosted cascade of simple features[C]//Proceedings of the 2001 IEEE Computer Society Conference Computer Vision and Pattern Recognition. Kauai, USA, 2001:511-518.
[8] FERREIRA A J, FIGUEIREDO M A T. Boosting algorithms:a review of methods, theory, and applications[M]. New York, USA:Springer, 2012:35-85.
[9] VAPNIK V. The nature of statistical learning theory[M]. 2nd eds. New York:Springer-Verlag, 2000.
[10] BREIMAN L. Random forests[J]. Machine learning, 2001, 45(1):5-32.
[11] DOLLáR P, APPEL R, BELONGIE S, et al. Fast feature pyramids for object detection[J]. IEEE transactions on pattern analysis and machine intelligence, 2014, 36(8):1532-1545.
[12] NAM W, DOLLáR P, HAN J H. Local decorrelation for improved detection[J]. Advances in neural information processing systems, 2014, 1:424-432.
[13] ZHANG Shanshan, BENENSON R, SCHIELE B. Filtered channel features for pedestrian detection[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015:1751-1760.
[14] KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[J]. Advances in neural information processing systems, 2012, 25(2):1097-1105.
[15] SIMONYAN K, ZISSERMAN A. Very deep convolutional networks for large-scale image recognition[J]. arXiv:1409.1556, 2014.
[16] GIRSHICK R, DONAHUE J, DARRELL T, et al. Rich feature hierarchies for accurate object detection and semantic segmentation[C]//Proceedings of 2014 IEEE Conference on Computer Vision and Pattern Recognition. Columbus, USA, 2014:580-587.
[17] REN Shaoqing, HE Kaiming, GIRSHICK R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE transactions on pattern analysis and machine intelligence, 2017, 39(6):1137-1149.
[18] REDMON J, DIVVALA S, GIRSHICK R, et al. You only look once:unified, real-time object detection[C]//Proceedings of 2016 IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas, USA, 2016:779-788.
[19] 王梦来, 李想, 陈奇, 等. 基于CNN的监控视频事件检测[J]. 自动化学报, 2016, 42(6):892-903 WANG Menglai, LI Xiang, CHEN Qi, et al. Surveillance event detection based on CNN[J]. Acta automatica sinica, 2016, 42(6):892-903
[20] HOSANG J, OMRAN M, BENENSON R, et al. Taking a deeper look at pedestrians[C]//Proceedings of 2015 IEEE Conference on Computer Vision and Pattern Recognition. Boston, USA, 2015:4073-4082.
[21] BENENSON R, OMRAN M, HOSANG J, et al. Ten years of pedestrian detection, what have we learned?[C]//Proceedings of 2014 European Conference on Computer Vision. Cham, Germany, 2015:613-627.
[22] 吕静, 高陈强, 杜银和, 等. 基于双通道特征自适应融合的红外行为识别方法[J]. 重庆邮电大学学报(自然科学版), 2017, 29(3):389-395 LYU Jing, GAO Chenqiang, DU Yinhe, et al. Infrared action recognition method based on adaptive fusion of dual channel features[J]. Journal of Chongqing university of posts and telecommunications (natural science edition), 2017, 29(3):389-395
[23] TIAN Yonglong, LUO Ping, WANG Xiaogang, et al. Deep learning strong parts for pedestrian detection[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile, 2015:1904-1912.
[24] 张雅俊, 高陈强, 李佩, 等. 基于卷积神经网络的人流量统计[J]. 重庆邮电大学学报(自然科学版), 2017, 29(2):265-271 ZHANG Yajun, GAO Chenqiang, LI Pei, et al. Pedestrian counting based on convolutional neural network[J]. Journal of Chongqing university of posts and telecommunications (natural science edition), 2017, 29(2):265-271
[25] ZHANG Liliang, LIN Liang, LIANG Xiaodan, et al. Is faster r-cnn doing well for pedestrian detection?[C]//Proceeding of 2016 European Conference on Computer Vision. Cham, Germany, 2016:443-457.
[26] ENZWEILER M, GAVRILA D M. Monocular pedestrian detection:survey and experiments[J]. IEEE transactions on pattern analysis and machine intelligence, 2009, 31(12):2179-2195.
[27] MOHAN A, PAPAGEORGIOU C, POGGIO T. Example-based object detection in images by components[J]. IEEE transactions on pattern analysis and machine intelligence, 2001, 23(4):349-361.
[28] OVERETT G, PETERSSON L, BREWER N, et al. A new pedestrian dataset for supervised learning[C]//Proceedings of 2008 IEEE Intelligent Vehicles Symposium. Eindhoven, Netherlands, 2008:373-378.
[29] GIRSHICK R. Fast R-CNN[C]//Proceedings of 2015 IEEE International Conference on Computer Vision. Santiago, Chile, 2015:1440-1448.
[30] 王成济, 罗志明, 钟准, 等. 一种多层特征融合的人脸检测方法[J]. 智能系统学报, 2018, 13(1):138-146 WANG Chengji, LUO Zhiming, ZHONG Zhun, et al. Face detection method fusing multi-layer features[J]. CAAI transactions on intelligent systems, 2018, 13(1):138-146
相似文献/References:
[1]殷瑞,苏松志,李绍滋.一种卷积神经网络的图像矩正则化策略[J].智能系统学报,2016,11(1):43.[doi:10.11992/tis.201509018]
 YIN Rui,SU Songzhi,LI Shaozi.Convolutional neural network’s image moment regularizing strategy[J].CAAI Transactions on Intelligent Systems,2016,11():43.[doi:10.11992/tis.201509018]
[2]龚震霆,陈光喜,任夏荔,等.基于卷积神经网络和哈希编码的图像检索方法[J].智能系统学报,2016,11(3):391.[doi:10.11992/tis.201603028]
 GONG Zhenting,CHEN Guangxi,REN Xiali,et al.An image retrieval method based on a convolutional neural network and hash coding[J].CAAI Transactions on Intelligent Systems,2016,11():391.[doi:10.11992/tis.201603028]
[3]刘帅师,程曦,郭文燕,等.深度学习方法研究新进展[J].智能系统学报,2016,11(5):567.[doi:10.11992/tis.201511028]
 LIU Shuaishi,CHENG Xi,GUO Wenyan,et al.Progress report on new research in deep learning[J].CAAI Transactions on Intelligent Systems,2016,11():567.[doi:10.11992/tis.201511028]
[4]师亚亭,李卫军,宁欣,等.基于嘴巴状态约束的人脸特征点定位算法[J].智能系统学报,2016,11(5):578.[doi:10.11992/tis.201602006]
 SHI Yating,LI Weijun,NING Xin,et al.A facial feature point locating algorithmbased on mouth-state constraints[J].CAAI Transactions on Intelligent Systems,2016,11():578.[doi:10.11992/tis.201602006]
[5]宋婉茹,赵晴晴,陈昌红,等.行人重识别研究综述[J].智能系统学报,2017,12(6):770.[doi:10.11992/tis.201706084]
 SONG Wanru,ZHAO Qingqing,CHEN Changhong,et al.Survey on pedestrian re-identification research[J].CAAI Transactions on Intelligent Systems,2017,12():770.[doi:10.11992/tis.201706084]
[6]杨晓兰,强彦,赵涓涓,等.基于医学征象和卷积神经网络的肺结节CT图像哈希检索[J].智能系统学报,2017,12(6):857.[doi:10.11992/tis.201706035]
 YANG Xiaolan,QIANG Yan,ZHAO Juanjuan,et al.Hashing retrieval for CT images of pulmonary nodules based on medical signs and convolutional neural networks[J].CAAI Transactions on Intelligent Systems,2017,12():857.[doi:10.11992/tis.201706035]
[7]王科俊,赵彦东,邢向磊.深度学习在无人驾驶汽车领域应用的研究进展[J].智能系统学报,2018,13(1):55.[doi:10.11992/tis.201609029]
 WANG Kejun,ZHAO Yandong,XING Xianglei.Deep learning in driverless vehicles[J].CAAI Transactions on Intelligent Systems,2018,13():55.[doi:10.11992/tis.201609029]
[8]莫凌飞,蒋红亮,李煊鹏.基于深度学习的视频预测研究综述[J].智能系统学报,2018,13(1):85.[doi:10.11992/tis.201707032]
 MO Lingfei,JIANG Hongliang,LI Xuanpeng.Review of deep learning-based video prediction[J].CAAI Transactions on Intelligent Systems,2018,13():85.[doi:10.11992/tis.201707032]
[9]王成济,罗志明,钟准,等.一种多层特征融合的人脸检测方法[J].智能系统学报,2018,13(1):138.[doi:10.11992/tis.201707018]
 WANG Chengji,LUO Zhiming,ZHONG Zhun,et al.Face detection method fusing multi-layer features[J].CAAI Transactions on Intelligent Systems,2018,13():138.[doi:10.11992/tis.201707018]
[10]葛园园,许有疆,赵帅,等.自动驾驶场景下小且密集的交通标志检测[J].智能系统学报,2018,13(3):366.[doi:10.11992/tis.201706040]
 GE Yuanyuan,XU Youjiang,ZHAO Shuai,et al.Detection of small and dense traffic signs in self-driving scenarios[J].CAAI Transactions on Intelligent Systems,2018,13():366.[doi:10.11992/tis.201706040]

备注/Memo

收稿日期:2017-10-31。
基金项目:国家自然科学基金项目(61402053);湖南省教育厅科研重点项目(16A008);湖南省交通厅科技项目(201446);长沙理工大学研究生科研创新项目(CX2017SS19);长沙理工大学研究生课程建设项目(KC201611).
作者简介:伍鹏瑛,男,1990年生,硕士研究生,主要研究方向为计算机视觉、模式识别。;张建明,男,1976年生,副教授,博士,主要研究方向为计算机视觉、智能交通系统。发表学术论文50余篇,其中EI收录26篇,SCI收录9篇。;彭建,男,1971年生,副教授,主要研究方向为目标检测、计算机视觉。发表学术论文20余篇。
通讯作者:张建明.E-mail:jmzhang@csust.edu.cn

更新日期/Last Update: 2019-04-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com