[1]许腾腾,王瑞,黄恒君.一种加入类间因素的曲线聚类算法[J].智能系统学报,2019,14(2):362-368.[doi:10.11992/tis.201709029]
XU Tengteng,WANG Rui,HUANG Hengjun.Curve clustering algorithms by adding the differences among clusters[J].CAAI Transactions on Intelligent Systems,2019,14(2):362-368.[doi:10.11992/tis.201709029]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
14
期数:
2019年第2期
页码:
362-368
栏目:
学术论文—机器学习
出版日期:
2019-03-05
- Title:
-
Curve clustering algorithms by adding the differences among clusters
- 作者:
-
许腾腾, 王瑞, 黄恒君
-
兰州财经大学 统计学院, 甘肃 兰州 730020
- Author(s):
-
XU Tengteng, WANG Rui, HUANG Hengjun
-
School of Statistics, Lanzhou University of Finance and Economics, Lanzhou 730020, China
-
- 关键词:
-
函数型数据; 类间差异; 曲线聚类; B-样条; 距离度量
- Keywords:
-
functional data; differences among clusters; curve clustering; B-spline; distance metric
- 分类号:
-
TP181
- DOI:
-
10.11992/tis.201709029
- 摘要:
-
针对目前的曲线聚类算法基于类内差异设计,造成不同类之间的曲线区分度不高的问题。在曲线拟合、曲线距离界定的基础上,构造新的目标函数,提出同时考虑类内和类间差异的曲线聚类算法。模拟结果显示,该曲线聚类能够提高聚类精度;针对NO2污染物小时浓度的实例分析表明,该曲线聚类算法具有更好的类间区分度。
- Abstract:
-
With the improvement of accuracy and frequency of data collection, functional data has appeared. Curves’ clustering is a fundamental exploratory task in functional data analysis, and To sovave currently curves clustering algorithms available are based on the differences within each cluster, which has resulted in a low distinction among different curves. Therefore, on the base of curve fitting and curve distance, and with constructed objective function, curves clustering algorithms will be put forward with the consideration of cluster differences. Simulated results show that the curve cluster improves clustering accuracy. The example analysis of hourly NO2 concentration (μg/m3) indicates that this kind of curves clustering algorithms has a better distinction among different clusters.
更新日期/Last Update:
2019-04-25