[1]杨恢先,付宇,曾金芳,等.基于正交Log-Gabor滤波二值模式的人脸识别算法[J].智能系统学报,2019,14(2):330-337.[doi:10.11992/tis.201708015]
YANG Huixian,FU Yu,ZENG Jinfang,et al.Face recognition based on orthogonal Log-Gabor binary pattern[J].CAAI Transactions on Intelligent Systems,2019,14(2):330-337.[doi:10.11992/tis.201708015]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
14
期数:
2019年第2期
页码:
330-337
栏目:
学术论文—机器感知与模式识别
出版日期:
2019-03-05
- Title:
-
Face recognition based on orthogonal Log-Gabor binary pattern
- 作者:
-
杨恢先, 付宇, 曾金芳, 徐唱
-
湘潭大学 物理与光电工程学院, 湖南 湘潭 411105
- Author(s):
-
YANG Huixian, FU Yu, ZENG Jinfang, XU Chang
-
School of Physics and Optoelectronic, Xiangtan University, Xiangtan 411105, China
-
- 关键词:
-
人脸识别; Log-Gabor滤波器; 协同表征; 正交; 稀疏编码; 二值模式; 单样本; 多尺度
- Keywords:
-
face recognition; Log-Gabor filter; collaborative representation; orthogonality; sparse coding; binary pattern; single sample; multi scale
- 分类号:
-
TP391.4
- DOI:
-
10.11992/tis.201708015
- 摘要:
-
为消除可变光照对人脸识别的影响,提出一种基于正交Log-Gabor滤波二值模式(OLGBP)的人脸识别算法。该算法对样本在正交方向做Log-Gabor变换,然后将所得特征图像进行虚实分解和同尺度多方向二值融合构成OLGBP特征向量,再将这些特征向量构成协同表征字典D。最后,在字典D下对测试样本采用协同表征求稀疏系数,并通过误差重构来分类。在AR、Extend Yale B和CAS-PEAL-R1人脸数据库上的实验结果表明,OLGBP算法对光照变化的单样本人脸识别具有较好的效果,从而验证了算法的有效性。
- Abstract:
-
To eliminate the effect of varying illumination on face recognition, a novel method of face recognition based on orthogonal log-Gabor binary pattern (OLGBP) is proposed in this paper. First, the algorithm performs log-Gabor transform on the samples in the orthogonal direction. Then the log-Gabor feature image is decomposed into real and imaginary parts, and the OLGBP feature vectors are constructed by fusing them into a binary pattern in the same scale at different directions. These feature vectors then form a collaboratively representative dictionary D. Finally, sparse coefficients are obtained by collaboratively representing these feature vectors with the test samples based on the dictionary D, and the test samples are classified by reconstruction of errors. The results for experiments performed on AR, Extend Yale B, and CAS-PEAL-R1 face databases show that the OLGBP algorithm has good effect on a single sample with illumination variation, and the effectiveness of the algorithm is verified.
更新日期/Last Update:
2019-04-25