[1]景坤雷,赵小国,张新雨,等.具有Levy变异和精英自适应竞争机制的蚁狮优化算法[J].智能系统学报,2018,13(2):236-242.[doi:10.11992/tis.201706091]
 JING Kunlei,ZHAO Xiaoguo,ZHANG Xinyu,et al.Ant lion optimizer with levy variation and adaptive elite competition mechanism[J].CAAI Transactions on Intelligent Systems,2018,13(2):236-242.[doi:10.11992/tis.201706091]
点击复制

具有Levy变异和精英自适应竞争机制的蚁狮优化算法

参考文献/References:
[1] MIRJALILI S. The ant lion optimizer[J]. Advances in engineering software, 2015, 83: 80-98.
[2] SAXENA P, KOTHARI A. Ant lion optimization algorithm to control side lobe level and null depths in linear antenna arrays[J]. AEU-International journal of electronics and communications, 2016, 70(9): 1339-1349.
[3] HADIDIAN-MOGHADDAM M J, ARABI-NOWDEH S, BIGDELI M, et al. A multi-objective optimal Sizing and siting of distributed generation using ant lion optimization technique[J]. Ain shams engineering journal, 2017, doi: 10.1016/j.asej.2017.03.001.
[4] RAJU M, SAIKIA L C, SINHA N. Automatic generation control of a multi-area system using ant lion optimizer algorithm based PID plus second order derivative controller[J]. International journal of electrical power and energy systems, 2016, 80: 52-63.
[5] RAJAN A, JEEVAN K, MALAKAR T. Weighted elitism based ant lion optimizer to solve optimum VAr planning problem[J]. Applied soft computing, 2017, 55: 352-370.
[6] 赵世杰, 高雷阜, 于冬梅, 等. 带混沌侦查机制的蚁狮优化算法优化SVM参数[J]. 计算机科学与探索, 2016, 10(5): 722-731.
ZHAO Shijie, GAO Leifu, YU Dongmei, et al. Ant lion optimizer with chaotic investigation mechanism for optimizing SVM parameters[J]. Journal of frontiers of computer science and technology, 2016, 10(5): 722-731.
[7] REYNOLDS A. Liberating Lévy walk research from the shackles of optimal foraging[J]. Physics of life reviews, 2015, 14: 59-83.
[8] 何莉, 王淼, 李博. 面向单目标优化的集成粒子群算法[J]. 重庆邮电大学学报: 自然科学版, 2017, 29(4): 527-534.
HE Li, WANG Miao, LI Bo. Ensemble particle swarm optimizer for single objective optimization[J]. Journal of Chongqing university of posts and telecommunications: natural science edition, 2017, 29(4): 527-534.
[9] REYNOLDS A M. Cooperative random Lévy flight searches and the flight patterns of honeybees[J]. Physics letters A, 2006, 354(5/6): 384-388.
[10] 朱颢东, 孙振, 吴迪, 等. 基于改进蚁群算法的移动机器人路径规划[J]. 重庆邮电大学学报: 自然科学版, 2016, 28(6): 849-855.
ZHU Haodong, SUN Zhen, WU Di, et al. Path planning for mobile robot based on improved ant colony algorithm[J]. Journal of Chongqing university of posts and telecommunications: natural science edition, 2016, 28(6): 849-855.
[11] LEE C Y, YAO Xin. Evolutionary programming using mutations based on the levy probability distribution[J]. IEEE transactions on evolutionary computation, 2004, 8(1): 1-13.
[12] MANTEGNA R N. Fast, accurate algorithm for numerical simulation of Lévy stable stochastic processes[J]. Physical review E, 1994, 49(5): 4677-4683.
[13] JENSI R, JIJI G W. An enhanced particle swarm optimization with levy flight for global optimization[J]. Applied soft computing, 2016, 43: 248-261.
[14] 江建. 精英自适应混合遗传算法及其实现[J]. 计算机工程与应用, 2009, 45(27): 34-35, 101.
JIANG Jian. Elite adaptive hybrid genetic algorithm and its realization[J]. Computer engineering and applications, 2009, 45(27): 34-35, 101.
[15] 周新宇, 吴志健, 王晖, 等. 一种精英反向学习的粒子群优化算法[J]. 电子学报, 2013, 41(8): 1647-1652.
ZHOU Xinyu, WU Zhijian, WANG Hui, et al. Elite opposition-based particle swarm optimization[J]. Acta electronica sinica, 2013, 41(8): 1647-1652.
[16] 刘丁. 直拉硅单晶生长过程建模与控制[M]. 北京: 科学出版社, 2015: 1-3, 46-57.
LIU Ding. Modeling and controlling of crystal growth in the Czochralski process[M]. Beijing: Science Press, 2015: 1-3, 46-57.
[17] 刘胜, 宋佳, 李高云. PSO并行优化LSSVR非线性黑箱模型辨识[J]. 智能系统学报, 2013, 5(1): 51-56.
LIU Sheng, SONG Jia, LI Gaoyun. Modeling a complex nonlinear system with particle swarm optimization and parallel-optimized least squares support vector regression[J]. CAAI transactions on intelligent systems, 2013, 5(1): 51-56.
相似文献/References:
[1]潘悦悦,吴立飞,杨晓忠.一种多策略改进鲸鱼优化算法的混沌系统参数辨识[J].智能系统学报,2024,19(1):176.[doi:10.11992/tis.202303043]
 PAN Yueyue,WU Lifei,YANG Xiaozhong.Parameter identification of chaotic system based on a multi-strategy improved whale optimization algorithm[J].CAAI Transactions on Intelligent Systems,2024,19():176.[doi:10.11992/tis.202303043]

备注/Memo

收稿日期:2017-06-30。
基金项目:国家自然科学基金重点项目(61533014);陕西省教育厅专项科研计划项目(17JK0456).
作者简介:景坤雷,男,1993年生,硕士研究生,主要研究方向为非线性大时滞系统建模、参数辨识与控制;赵小国,男,1978年生,讲师,博士研究生,主要研究方向为复杂系统的建模与控制;张新雨,男,1985年生,讲师,博士研究生,IEEE会员,主要研究方向为信号处理、自适应滤波、多目标优化和检测技术。先后发表学术论文10篇,被EI检索6篇,授权实用新型专利2项,软件著作权2项,申报发明专利1项。
通讯作者:刘丁.E-mail:liud@xaut.edu.cn.

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com