[1]宋婉茹,赵晴晴,陈昌红,等.行人重识别研究综述[J].智能系统学报,2017,12(6):770-780.[doi:10.11992/tis.201706084]
SONG Wanru,ZHAO Qingqing,CHEN Changhong,et al.Survey on pedestrian re-identification research[J].CAAI Transactions on Intelligent Systems,2017,12(6):770-780.[doi:10.11992/tis.201706084]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
12
期数:
2017年第6期
页码:
770-780
栏目:
综述
出版日期:
2017-12-25
- Title:
-
Survey on pedestrian re-identification research
- 作者:
-
宋婉茹, 赵晴晴, 陈昌红, 干宗良, 刘峰
-
南京邮电大学 通信与信息工程学院, 江苏 南京 210003
- Author(s):
-
SONG Wanru, ZHAO Qingqing, CHEN Changhong, GAN Zongliang, LIU Feng
-
College of Communication and Information Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
-
- 关键词:
-
行人重识别; 特征表达; 度量学习; 深度学习; 卷积神经网络; 数据集; 视频监控
- Keywords:
-
pedestrian re-identification; feature representation; metric learning; deep learning; convolutional neural networks; datasets; video surveillance
- 分类号:
-
TP181
- DOI:
-
10.11992/tis.201706084
- 摘要:
-
行人重识别是智能视频分析领域的研究热点,得到了学术界的广泛重视。行人重识别旨在非重叠视角域多摄像头网络下进行的行人匹配,即确认不同位置的摄像头在不同的时刻拍摄到的行人目标是否为同一人。本文根据研究对象的不同,将目前的研究分为基于图像的行人重识别和基于视频的行人重识别两类,对这两类分别从特征描述、度量学习和数据库集3个方面将现有文献分类进行了详细地总结和分析。此外,随着近年来深度学习算法的广泛应用,也带来了行人重识别在特征描述和度量学习方面算法的变革,总结了深度学习在行人重识别中的应用,并对未来发展趋势进行了展望。
- Abstract:
-
The intelligent video analysis method based on pedestrian re-identification has become a research focus in the field of computer vision, and it has received extensive attention from the academic community. Pedestrian re-identification aims to verify pedestrian identity in image sequences captured by cameras that are orientated in different directions at different times. This current study is classified into two categories: image-based and video-based algorithms. For these two categories, using feature description, metric learning, and various benchmark datasets, detailed analysis is performed, and a summary is presented. In addition, the wide application of deep-learning algorithms in recent years has changed pedestrian re-identification in terms of feature description and metric learning. The paper summarizes the application of deep learning in pedestrian re-identification and looks at future development trends.
备注/Memo
收稿日期:2017-06-27;改回日期:。
基金项目:国家自然科学基金项目(61471201).
作者简介:宋婉茹,女,1992年生,就读于南京邮电大学信号与信息专业,主要研究方向为行人重识别;赵晴晴,女,1993年生,就读于南京邮电大学信号与信息专业,主要研究方向为行人重识别;陈昌红,女,1982年生,副教授,主要研究方向为智能视频分析、模式识别及图像理解。发表学术论文20余篇,其中被SCI检索8篇。
通讯作者:宋婉茹.E-mail:songwanruu@163.com.
更新日期/Last Update:
2018-01-03