[1]肖琴,张永韡,汪镭.增量极坐标编码的贝赛尔曲线智能优化算法[J].智能系统学报,2017,12(6):841-847.[doi:10.11992/tis.201706076]
 XIAO Qin,ZHANG Yongwei,WANG Lei.Intelligent optimized Bezier curves based on incremental polar coordinate coding[J].CAAI Transactions on Intelligent Systems,2017,12(6):841-847.[doi:10.11992/tis.201706076]
点击复制

增量极坐标编码的贝赛尔曲线智能优化算法

参考文献/References:
[1] 侯世旺, 朱慧明. 基于模糊统计的不确定质量特性控制图研究[J]. 统计与决策, 2016(16): 25-28.
HOU Shiwang, ZHU Huiming. Research on uncertain quality control chart based on fuzzy statistics[J]. Statistics and decision, 2016(16): 25-28.
[2] 张明, 陈楠, 吴陈. 一种改进的模糊统计方法[J]. 华东船舶工业学院学报: 自然科学版, 2004,18(4): 58-61.
ZHANG Ming, CHEN Nan, WU Chen. An improved fuzzy statistical method[J]. Journal of East China shipbuilding institute: natural science edition, 2004,18(4): 58-61..
[3] 袁力, 姜琴. 隶属函数确定方法探讨[J]. 郧阳师范高等专科学校学报, 2009, 29(6): 44-46.
YUAN Li, JIANG Qin. Discussion on the method of determining membership function[J]. Journal of Yunyang normal college, 2009, 29(6): 44-46.
[4] HASUIKE T, KATAGIRI H, TSUBAKI H. A constructing algorithm for appropriate piecewise linear membership function based on statistics and information theory[J]. Procedia computer science, 2015, 60: 994-1003.
[5] 董炜, 陈卫征, 徐晓滨, 等. 基于可分性测度的模糊隶属函数确定方法[J]. 控制与决策, 2014, 29(11): 2089-2093.
DONG Wei, CHEN Weizheng, XU Xiaobin, et al. Determining method of fuzzy membership function based on separability measure[J]. Control and decision, 2014, 29(11): 2089-2093.
[6] 马万元, 耿秀丽. 基于概率统计的模糊隶属函数计算研究[J]. 数学理论与应用, 2016(3): 93-100.
MA Wanyuan, GENG Xiuli. Research on the fuzzy membership function determination based on probability statistics[J]. Mathematical theory and applications, 2016(3): 93-100.
[7] 袁杰, 史海波, 刘昶. 基于最小二乘拟合的模糊隶属函数构建方法[J]. 控制与决策, 2008, 23(11): 1263-1266, 1271.
YUAN Jie, SHI Haibo, LIU Chang. Construction of fuzzy membership functions based on least squares fitting[J]. Mathematical theory and applications 2008, 23(11): 1263-1266, 1271.
[8] 王石青, 邱林, 王志良, 等. 确定隶属函数的统计分析法[J]. 华北水利水电学院学报, 2002(1): 68-71.
WANG Shiqing, QIU Lin, WANG Zhiliang, et al. Determine the membership function based on statistical analysis[J]. Journal of North China institute of water conservancy and hydroelectric power, 2002(1): 68-71.
[9] MEDAGLIA A S L, FANG S C, NUTTLE H L W, et al. An efficient and flexible mechanism for constructing membership functions[J]. European journal of operational research, 2002, 139(1): 84-95.
[10] 王林, 富庆亮. 基于贝塞尔曲线理论的备件需求模糊隶属度函数构建模型[J]. 运筹与管理, 2011.20(1): 87-92.
WANG Lin, FU Qingliang. A model for the construction of spare parts dem and fuzzy membership function based on bezier curves theory[J]. Operations research and managent science, 2011, 20(1): 87-92.
[11] ZAKARIA R, WAHAB A F. Fuzzy set theory in modeling uncertainty data via interpolation rational bezier surface function[J]. Applied mathematical sciences, 2013, 45 (7): 2229-2238.
[12] AZAR M M. Maneuver planning with higher order rational Bezier curves[OL/EB]. [2017-04-02]. http://www.freepatentsonline.com/9785146.html
[13] DERKSEN R W, ROGALSKY T. Bezier-PARSEC: an optimized aerofoil parameterization for design[J]. Advances in engineering software, 2010, 41(7): 923-930.
[14] 丁青锋, 尹晓宇. 差分进化算法综述[J]. 智能系统学报, 2017, 12(4): 431-442.
DING Qingfeng, YIN Xiaoyu. Research survey of differential evolution algorithms[J]. CAAI transactions on intelligent systems, 2017, 12(4): 431-442.
[15] DAS S, SUGANTHAN P N. Differential evolution: a survey of the state-of-the-art[J]. IEEE transactions on evolutionary computation, 2011, 15(1): 4-31.
[16] ZHANG M, JU Z. A novel fuzzy support vector machine based on differential evolution[J]. Icic express letters, 2017, 11(7): 1159-1165.
[17] 陈成, 何玉庆, 卜春光, 等. 基于四阶贝塞尔曲线的无人车可行轨迹规划[J]. 自动化学报, 2015, 41(3): 486-496.
CHEN Cheng, HE Yuqing, BU Chunguang, et al. Feasible trajectory generation for autonomous vehicles based on quartic bezier curve[J], Acta automatica sinica, 2015, 41(3): 486-496.
[18] MARSH D. Applied geometry for computer graphics and cad[M]. 2006.
[19] R STORN, K PRICE. Differential evolution-a simple and efficient heuristic for global optimization over continuous spaces[J]. Journal of global optimization, 1997, 11(4): 341-359.
[20] Y X YUAN. A modified bfgs algorithm for unconstrained optimization[J]. IMA journal of numerical analysis, 1991, 11(3): 325-332.
相似文献/References:
[1]刘三阳 杜喆.一种改进的模糊支持向量机算法[J].智能系统学报,2007,2(3):30.
 LIU San-yang,DU Zhe.An improved fuzzy support vector machine method[J].CAAI Transactions on Intelligent Systems,2007,2():30.
[2]王华鲜,华容,刘华平,等.无人机群多目标协同主动感知的自组织映射方法[J].智能系统学报,2020,15(3):609.[doi:10.11992/tis.201908022]
 WANG Huaxian,HUA Rong,LIU Huaping,et al.Self-organizing feature map method for multi-target active perception of unmanned aerial vehicle systems[J].CAAI Transactions on Intelligent Systems,2020,15():609.[doi:10.11992/tis.201908022]
[3]卢福强,刘婷,杜子超,等.模糊粒子群优化算法的第四方物流运输时间优化[J].智能系统学报,2021,16(3):474.[doi:10.11992/tis.202004032]
 LU Fuqiang,LIU Ting,DU Zichao,et al.Convergence fuzzy particle swarm optimization based transportation time optimization of 4PL[J].CAAI Transactions on Intelligent Systems,2021,16():474.[doi:10.11992/tis.202004032]

备注/Memo

收稿日期:2017-06-23;改回日期:。
基金项目:国家自然科学基金项目(71371142, 61503287);镇江市软科学基金项目(2225031701).
作者简介:肖琴,女,1983年生,助理实验师,主要研究方向为机器学习、数据挖掘;张永韡,男,1983年生,讲师,博士,主要研究方向为智能计算、智能控制;汪镭,男,1970年生,教授,博导,主要研究方向为具有群体智能特征的各类智能理论和算法及其融合、并行实现技术。发表学术论文90余篇,出版专著4部。
通讯作者:张永韡.E-mail:ywzhang@just.edu.cn.

更新日期/Last Update: 2018-01-03
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com