[1]潘主强,张林,张磊,等.中医临床不均衡数据疾病分类方法研究[J].智能系统学报,2017,12(6):848-856.[doi:10.11992/tis.201706046]
 PAN Zhuqiang,ZHANG Lin,ZHANG Lei,et al.Research on classification of diseases of clinical imbalanced data in traditional Chinese medicine[J].CAAI Transactions on Intelligent Systems,2017,12(6):848-856.[doi:10.11992/tis.201706046]
点击复制

中医临床不均衡数据疾病分类方法研究

参考文献/References:
[1] 邹永杰. 基于特征提取的分类集成在脾虚证诊断中的应用[J]. 计算机应用与软件, 2010, 27(3): 22-25.
ZOU Yongjie. Applying feature selection-based classification ensemble in spleen asthenia diagnosis[J]. Computer applications and software, 2010, 27(3): 22-25.
[2] 刘天羽, 李国正. 齿轮故障不均衡分类问题的研究[J]. 计算机工程与应用, 2010, 46(20): 146-148.
LIU Tianyu, LI Guozheng. Research on imbalanced problems in gear fault diagnosis. Computer engineering and applications, 2010, 46(20): 146-148.
[3] 谢娜娜, 房斌, 吴磊. 不均衡数据集上文本分类方法研究[J]. 计算机工程与应用, 2013, 49(20): 118-121.
XIE Nana, FANG Bin, WU Lei. Study of text categorization on imbalanced data. Computer engineering and applications, 2013, 49(20): 118-121.
[4] 陶新民, 郝思媛, 张冬雪, 等. 不均衡数据分类算法的综述[J]. 重庆邮电大学学报:自然科学版, 2013, 25(1): 101-110.
TAO Xinmin, HAO Siyuan, ZHANG Dongxue, et al. Overview of classification algorithms for unbalanced data[J]. Journal of chongqing university of posts and telecommunications, 2013, 25(1): 101-43.
[5] LIUT Y, LI G Z. The imbalanced data problem in the fault diagnosis of rolling bearing[J]. Computer engineering and science, 2010, 32(5): 150-153.
[6] YU K S. A Network intrusion detection model based on data ming and feature selection schemes[J]. Microelectronics and computer, 2011, 28(8): 74-76.
[7] ZWEIG M H, CAMPBELLmpbell G. Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine[J]. Clinical chemistry, 1993, 39(4): 561-77.
[8] 浮盼盼. 大规模不均衡数据分类方法研究[D]. 大连:辽宁师范大学, 2014.
FU Panpan. Research on classification methods for large-scale imbalanced data [D]. Liaoning normal university, 2014.
[9] MIERSWA I. Controlling overfitting with multi-objective support vector machines[C]//Genetic and Evolutionary Computation Conference. London, UK, 2007: 1830-1837.
[10] 赵自翔, 王广亮, 李晓东. 基于支持向量机的不均衡数据分类的改进欠采样方法[J]. 中山大学学报:自然科学版, 2012, 51(6): 10-16.
ZHAO Zixiang, WANG Guangliang, LI Xiaodong. An improved SVM based under-sampling method for classifying imbalanced data[J]. Acta scientiarum naturalium universitatis sunyatseni, 2012, 51(6): 10-16.
[11] 朱明, 陶新民. 基于随机下采样和SMOTE的不均衡SVM分类算法[J]. 信息技术, 2012, (1): 39-43.
ZHU MING, TAO Xingmin. The SVM classifier for unbalanced data based on combination of RU-Undersample and SMOTE[J]. Information technology, 2012 (1): 39-43.
[12] LI G Z, MENG H H, LU W C, et al. Asymmetric bagging and feature selection for activitiesprediction of drug molecules[C]//International Multi-Symposiums on Computer and Computational Sciences. [S.l.], 2007: 1-11.
[13] DRUMMOND C, HOLTE R C. C4.5, Class imbalance, and cost sensitivity: why under-sampling beats over-sampling[C]//Proc of the Icml Workshop on Learning from Imbalanced Datasets Ⅱ, 2003: 1-8.
[14] BHAVANI S, NAGARGADDE A, THAWANI A, et al. Substructure-based support vector machine classifiers for prediction of adverse effects in diverse classes of drugs[J]. Journal of chemical information and modeling, 2007, 46(7): 2478-2486.
[15] 潘主强, 张林, 颜仕星, 等. 中医睡眠情绪类疾病不均衡数据的分类研究[J]. 济南大学学报(自然科学版), 2017, 31(1): 55-60.
PAN Zhuqiang, ZHANG Lin, YAN Shixing, et al. Classification research on imbalanced TCM clinical data of sleep and emotion disorder disease. Journal of university of Jinan: science and technology, 2017, 31(1): 55-60.
[16] UTANS J, MOODY J. Selecting neural network architectures via the prediction risk: application to corporate bond rating prediction[C]//International Conference on Artificial Intelligence on Wall Street. [S.l.], 1991: 35-41.
[17] WITTEN I H, FRANK E. Data mining: practical machine learning tools and techniques with Java implementations [M]. Morgan Kaufmann Publishers Inc, 2011: 206-207.
[18] CHANG C C, LIN C J. LIBSVM: a library for support vector machines[J]. Acm transactions on intelligent systems and technology, 2007, 2(3): 389-396.

备注/Memo

收稿日期:2017-06-14;改回日期:。
基金项目:国家自然科学基金项目(81503680);中央级公益性科研院所基本科研业务费专项资金项目(ZZ0908032);全民健康保障信息化工程中医药研究项目(215005).
作者简介:潘主强,男,1987年生,硕士研究生,CCF会员,主要研究方向为数据挖掘;张林,男,1963年生,教授,博士,主要研究方向为计算机图像处理、计算机网络安全。曾获国家科学技术进步三等奖1项,发表学术论文10余篇;张磊,男,1981年生,助理研究员,博士,主要研究方向为中医临床数据挖掘。
通讯作者:张磊.E-mail:tcmxpzl@126.com.

更新日期/Last Update: 2018-01-03
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com