[1]金晨,谢振平,任立园,等.基于时空域联合建模的领域知识演化脉络分析[J].智能系统学报,2017,12(5):735-744.[doi:10.11992/tis.201706023]
 JIN Chen,XIE Zhenping,REN Liyuan,et al.Evolutionary path mining of domain knowledge by joint modeling in space-time domain[J].CAAI Transactions on Intelligent Systems,2017,12(5):735-744.[doi:10.11992/tis.201706023]
点击复制

基于时空域联合建模的领域知识演化脉络分析

参考文献/References:
[1] BODNER G M. Constructivism:a theory of knowledge[J]. Journal of chemical education, 1985, 63(10):873-878.
[2] MCCOURT D M. Practice theory and relationalism as the new constructivism[J]. International studies quarterly, 2016, 60(3):475-485.
[3] 高俊平, 张晖, 赵旭剑, 等. 面向维基百科的领域知识演化关系抽[J]. 计算机学报, 2016, 39(10):2088-2101.GAO Junping, CHEN Hui, ZHAO Xujian. Evolutionary relation extraction for domain knowledge in Wikipedia[J]. Chinese journal of computers, 2016, 39(10):2088-2101.
[4] 马费成, 陈潇俊, 刘向. 基于科学知识图谱分析的知识演化研究-以生物医学为例[J]. 情报科学, 2012, 30(1):1-7.MA Feicheng, CHEN Xiaojun, LIU Xiang. Study on the knowledge evolution based on mapping scientific domain-a case of the biomedicine field[J]. Information science, 2012, 30(1):1-7.
[5] 刘向, 马费成. 科学知识网络的演化与动力——基于科学引证网络的分析[J]. 管理科学学报, 2012, 15(1):87-94.LIU Xiang, MA Feicheng. Evolution and dynamics of scientific knowledge network:Based on the study of scientific citation network[J].Journal of management sciences in China, 2012, 15(1):87-94.
[6] 许琦, 冯羽静. 一种基于专利引证网络的知识流提取方法:随机行走中的聚合效应[J]. 情报理论与实践, 2015, 38(12):98-103.XU Qi, FENG Yujing. A method of knowledge flow extraction based on patent citation network:aggregation effect in random walk[J]. Information theory and practice, 2015, 38(12):98-103.
[7] 黄玮强, 庄新田, 姚爽. 产业集群广义创新合作网络演化[J]. 东北大学学报自然科学版, 2012, 33(4):592-596.HUANG Weiqiang, ZHUANG Xintian, YAO Shuang. Evolution of generalized innovation network in industry clusters[J]. Journal of northeastern university:natural science, 2012, 33(4):592-596.
[8] 关世杰, 赵海. 互联网技术领域科研合作网络分析[J]. 东北大学学报:自然科学版, 2013, 34(4):509-511.GUAN Shijie, ZHAO Hai. Analysis of scientific research cooperation network in internet technology[J]. Journal of northeastern university:natural science, 2013, 34(4):509-511.
[9] 陆浩, 王飞跃, 刘德荣, 等. 基于科研知识图谱的近年国内外自动化学科发展综述[J]. 自动化学报, 2014, 40(5):994-1015.LU Hao, WANG Feiyue, LIU Derong, et al. A summary of development of automation discipline at home and abroad in recent years based on scientific research knowledge[J]. Acta automatica sinica, 2014, 40(5):994-1015.
[10] 张斌. 共词网络的结构与演化:概念与理论进展[J]. 情报杂志, 2014, 33(7):103-109.ZHANG Bin. The structure and evolution of co-word networks:concept and theoretical progress[J]. Journal of intelligence, 2014, 33(7):103-109.
[11] 张豪锋, 李海龙. 我国教育技术学研究前沿探讨——基于核心期刊关键词的共词网络与聚类分析[J]. 电化教育研究, 2011(10):26-29.ZHANG Haofeng, LI Hailong. Frontier study of educational technology research in China-Co-word network and cluster analysis based on keywords in core journals[J]. Eeducation research, 2011(10):26-29.
[12] 吴建南, 郑烨, 张攀,等. 基于共词网络分析的国内创新驱动研究热点与趋势[J]. 中国科技论坛, 2014(6):17-23.WU Jiannan, ZHENG Ye, ZHANG Pan, et al. Research focus and trend of domestic innovation driven research based on co-word network analysis[J]. China science and technology forum, 2014(6):17-23.
[13] 宗瑜, 李明楚, 江贺. 近似骨架导向的归约聚类算法[J]. 电子与信息学报, 2009, 31(12):2953-2957.ZONG Yu, LI Mingchu, JIANG He. Approximation of skeleton-oriented reduction clustering algorithm[J]. Journal of electronics and information technology, 2009, 31(12):2953-2957.
[14] 金萍, 宗瑜, 屈世超,等. 面向不确定数据的近似骨架启发式聚类算法[J]. 南京大学学报自然科学, 2015, 51(1):197-205.JIN Ping, ZONG Yu, QU Shichao, et al. Approximate skeleton heuristic clustering algorithm for uncertain data[J]. Journal of Nanjing university:natural sciences, 2015, 51(1):197-205.
[15] LU Z, SUN X, WEN Y, et al. Skeleton construction in mobile social networks:algorithms and applications[C]//Eleventh IEEE International Conference on Sensing, Communication, and Networking. Singapore, Singapore, 2014:477-485.
[16] 刘向, 马费成, 王晓光. 知识网络的结构及过程模型[J]. 系统工程理论与实践, 2013, 33(7):1836-1844.LIU Xiang, MA Feicheng, WANG Xiaoguang. The structure and process model of knowledge network[J]. System engineering theory and practice, 2013, 33(7):1836-1844.
[17] 马费成, 刘向. 科学知识网络的演化模型[J]. 系统工程理论与实践, 2013, 33(2):437-443.MA Feicheng, LIU Xiang. Evolution model of scientific knowledge network[J]. System engineering theory and practice, 2013, 33(2):437-443.
[18] 刘向,马费成,陈潇俊,等. 知识网络的结构与演化——概念与理论进展[J]. 情报科学,2011(06):801-809.LIU Xiang, MA Feicheng, CHEN Xiaojun, et al. The structure and evolution of knowledge network-concept and theory progress[J]. Information science, 2011(06):801-809.
[19] PFEIFFER J J, MORENO S, FOND T L, et al. Attributed graph models:modeling network structure with correlated attributes[C]//The International World Wide Web Conference. Seoul, Korea, 2014:831-842.
[20] CHOI J, YI S, LEE K C. Analysis of keyword networks in MIS research and implications for predicting knowledge evolution[J]. Information and management, 2011, 48(8):371-381.
[21] 袁劲松, 张小明, 李舟军. 术语自动抽取方法研究综述[J]. 计算机科学, 2015, 42(8):7-12.YUAN Jinsong, ZHANG Xiaoming, LI Zhoujun. A summary of the study on automatic extraction of terminology[J]. Computer science, 2015, 42(8):7-12.
[22] GUAN A, WANG Y, YANG L. Automatic term extraction for chinese opera domain ontology[C]//International Conference on Fuzzy Systems and Knowledge Discovery. Zhangjiajie, China, 2015:1372-1376.
[23] TAO L, WANG X L, GUAN Y, et al. Domain-specific term extraction and its application in text classification[J]. Acta electronica sinica, 2007, 35(2):328-332.
[24] MTC Castellví, RE Bagot, JV Palatresi. Automatic term detection:a review of current systems[J]. Recent advances in computational terminology, 2008, 52(1):53-88.
[25] 黄勋, 游宏梁, 于洋. 关系抽取技术研究综述[J]. 现代图书情报技术,2013, 29(11):30-39.HUANG Xun, YOU Hongliang, YU Yang. A summary of research on relational extraction technology[J]. New technology of library and information service, 2013, 29(11):30-39.
[26] DEY L, ABULAISH M, SHARMA G. Text Mining through Entity-Relationship Based Information Extraction[C]//International Conferences on Web Intelligence and Intelligent Agent Technology-Workshops. Silicon Valley, USA, 2007:177-180.

备注/Memo

收稿日期:2017-06-07。
基金项目:江苏省自然科学基金项目(BK20130161);国家自然科学基金项目(61572236);国家科技支撑计划项目(2015BAH54F01).
作者简介:金晨,男,1991年生,硕士研究生,主要研究方向为人工智能、机器学习、知识网络;谢振平,男,1979年生,副教授,CCF会员,博士,主要研究方向为演化认知、知识网络、机器视觉;任立园,女,1990年生,硕士研究生,主要研究方向为机器学习、数据挖掘。
通讯作者:谢振平.E-mail:xiezhenping@hotmail.com

更新日期/Last Update: 2017-10-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com