[1]姜婷,袭肖明,岳厚光.基于分布先验的半监督FCM的肺结节分类[J].智能系统学报,2017,12(5):729-734.[doi:10.11992/tis.201706018]
 JIANG Ting,XI Xiaoming,YUE Houguang.Classification of pulmonary nodules by semi-supervised FCM based on prior distribution[J].CAAI Transactions on Intelligent Systems,2017,12(5):729-734.[doi:10.11992/tis.201706018]
点击复制

基于分布先验的半监督FCM的肺结节分类

参考文献/References:
[1] MCGUIRE S. World Cancer Report 2014. Geneva,Switzerland:World Health Organization, International Agency for Research on Cancer, WHO Press, 2015[R]. Advances in nutrition, 2016, 7(2):418-419.
[2] 伍长荣, 接标, 叶明全. CT图像肺结节计算机辅助检测与诊断技术研究综述[J]. 数据采集与处理, 2016, 31(5):868-881.WU Changrong, JIE Biao, YE Mingquan. Reviews on computer-aided detection and diagnosis of pulmonary nodules in CT images[J]. Journal of data acquisition and processing, 2016, 31(5):868-881.
[3] LEE S L A, KOUZANI A Z, HU E J. Automated detection of lung nodules in computed tomography images:a review[J]. Machine vision and applications, 2012, 23(1):151-163.
[4] VALENTE I R S, CORTEZ P C, NETO E C, et al. Automatic 3D pulmonary nodule detection in CT images:A survey[J]. Computer methods and programs in biomedicine, 2016, 124(C):91-107.
[5] HAN F, WANG H, ZHANG G, et al. Texture feature analysis for computer-aided diagnosis on pulmonary nodules[J]. Journal of digital imaging, 2015, 28(1):99.
[6] HADY M F A, SCHWENKER F. Semi-supervised learning[J]. Intelligent systems reference library, 2010, 49(2):215-239.
[7] BENSAID A M, HALL L O, BEZDEK J C, et al. Partially supervised clustering for image segmentation[J]. Pattern recognition, 1996, 29(5):859-871.
[8] 张慧哲, 王坚. 基于初始聚类中心选取的改进FCM聚类算法[J]. 计算机科学, 2009, 36(6):206-209.ZHANG Huizhe, WANG Jian. Improved fuzzy C means clustering algorithm based on selecting initial clustering centers[J]. Computer science, 2009, 36(6):206-209.
[9] 李春芳, 庞雅静, 钱丽璞,等. 半监督FCM聚类算法目标函数研究[J]. 计算机工程与应用, 2009, 45(14):128-132.LI Chunfang, PANG Yajing, QIAN Lipu, et al. Objective function of semi-supervised FCM clustering algorithm[J]. Computer engineering and application, 2009, 45(14):128-132.
[10] WU K L. Analysis of parameter selections for fuzzy C-means[J]. Pattern recognition, 2012, 45(1):407-415.
[11] 侯薇, 董红斌, 印桂生. 一种基于隶属度优化的演化聚类算法[J]. 计算机研究与发展, 2013, 50(3):548-558.HOU Wei, DONG Hongbin, YIN Guisheng. A membership degree refinement-based evolutionary clustering algorithm[J]. Journal of computer research and development, 2013, 50(3):548-558.
[12] 李斌, 狄岚, 王少华,等. 基于改进核模糊C均值类间极大化聚类算法[J]. 计算机应用, 2016, 36(7):1981-1987.LI Bin, DI Lan, WANG Shaohua, et al. Clustering algorithm with maximum distance between clusters based on improved kernel fuzzy C-means[J]. Journal of computer applications, 2016, 36(7):1981-1987.
[13] 文传军, 汪庆淼, 詹永照. 均衡模糊C均值聚类算法[J]. 计算机科学, 2014, 41(8):250-253.WEN Chuanjun, WANG Qingmiao, ZHAN Yongzhao, et al. Equalization fuzzy C-means clustering algorithm[J]. Computer science, 2014, 41(8):250-253.
[14] 蔡加欣, 杨丰, 冯国灿. 改进退化的半监督模糊聚类应用于MR图像分割[J]. 中国图象图形学报, 2011, 16(5):784-791.CAI Jiaxin, YANG Feng, FENG Guocan, et al. Degeneracy-improved semi-supervised fuzzy clustering with application in MR image segmentation[J]. Journal of image and graphics, 2011, 16(5):784-791.
[15] 苏志远, 刘慧, 尹义龙. 基于弱监督ECOC算法的肺结节辅助检测[J]. 数据采集与处理, 2015, 30(5):1003-1010.SU Zhiyuan, LIU Hui, YIN Yilong, et al. Pulmonary nodule aided detection based on weakly-supervised ECOC algorithm[J]. Jornal of data acqusition and processing, 2015, 30(5):1003-1010.
[16] MURRAY P, MARSHALL S. A new design tool for feature extraction in noisy images based on grayscale hit-or-miss transforms[J]. IEEE transactions on image processing a publication of the ieee signal processing society, 2011, 20(7):1938-48.
[17] BAE H J, KANG E Y, YONG H S, et al. Paratracheal air cysts on thoracic multidetector CT:incidence, morphological characteristics and relevance to pulmonary emphysema[J]. British journal of radiology, 2013, 86(1021):20120218.
[18] BEZDEK J C, EHRLICH R, FULL W. FCM:the fuzzy C-means clustering algorithm[J]. Computers and geosciences, 1984, 10(2/3):191-203.
[19] PEDRYCZ W, WEMBER J, WALETZKY J. Fuzzy clusteringwith partial supervision[J]. IEEE transaction on system, man, and cybernetics, part B:cybernetics,1997, 27(5):787-795.
[20] MCNITT-GRAY M F, MEYER C R, REEVES A P, et al. The lung image database consortium (LIDC) data collection process for nodule detection and annotation[J]. Academic radiology, 2008, 14(12):1464-1474.
[21] 李秋萍, 刘慧, 苏志远. 基于改进的半监督FCM聚类算法的肺结节分类与识别[J]. 图学学报, 2015, 36(2):244-250.LI Qiuping, LIU Hui, SU Zhiyuan. Modified fuzzy clustering with partial supervision algorithm in classification and recognition of pulmonary nodules[J]. Journal of graphics, 2015, 36(2):244-250.

备注/Memo

收稿日期:2017-06-07。
基金项目:国家自然科学基金项目(61573219,61671274);山东省自然科学基金项目(ZR2016FQ18,ZR2014HM065);医药卫生科技发展计划项目(2014ws0109).
作者简介:姜婷,女,1991年生,硕士研究生,主要研究方向为数据挖掘、机器学习。参与多项国家自然科学基金等科研项目;袭肖明,男,1987年生,博士,主要研究方向为生物识别、机器学习。主持国家自然科学基金、省自然科学基金等多项科学研究项目;岳厚光,男,1971年生,副教授,主要研究方面为数据挖掘、机器学习。
通讯作者:袭肖明.E-mail:fyzq10@126.com

更新日期/Last Update: 2017-10-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com