[1]王永帅,陈增强,孙明玮,等.一阶惯性大时滞系统Smith预估自抗扰控制[J].智能系统学报,2018,13(4):500-508.[doi:10.11992/tis.201705031]
WANG Yongshuai,CHEN Zengqiang,SUN Mingwei,et al.Smith prediction and active disturbance rejection control for first-order inertial systems with long time-delay[J].CAAI Transactions on Intelligent Systems,2018,13(4):500-508.[doi:10.11992/tis.201705031]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
13
期数:
2018年第4期
页码:
500-508
栏目:
学术论文—人工智能基础
出版日期:
2018-07-05
- Title:
-
Smith prediction and active disturbance rejection control for first-order inertial systems with long time-delay
- 作者:
-
王永帅1, 陈增强1,2, 孙明玮1, 孙青林1
-
1. 南开大学 计算机与控制工程学院, 天津 300350;
2. 天津市智能机器人重点实验室, 天津 300350
- Author(s):
-
WANG Yongshuai1, CHEN Zengqiang1,2, SUN Mingwei1, SUN Qinglin1
-
1. College of Computer and Control Engineering, Nankai University, Tianjin 300350, China;
2. Key Laboratory of Intelligent Robotics of Tianjin, Tianjin 300350, China
-
- 关键词:
-
大时滞系统; 一阶惯性系统; 线性自抗扰控制; Smith预估器; 稳定裕度; 劳斯判据; 稳定性分析; 稳定可行域
- Keywords:
-
systems with long time-delay; first-order inertial systems; LADRC; Smith predictor; stability margin; Routh criterion; stability analysis; stable region
- 分类号:
-
TP272
- DOI:
-
10.11992/tis.201705031
- 摘要:
-
大时滞系统是工业过程控制中的典型难题,将先进控制方法应用于大时滞系统时需要与传统的Smith预估器相结合才能获得理想的控制效果。针对一阶惯性大时滞系统,研究了Smith预估器与线性自抗扰控制技术相结合的设计问题,分析了系统的稳定条件和参数摄动问题。证明了当被控对象参数与Smith预估器参数相同时,闭环控制系统稳定的结论,同时推导了参数不同时控制系统稳定的一个充分条件。另外基于数值仿真,从暂态性能、稳定裕度和抗扰能力三方面分析了系统参数和控制参数摄动的影响作用,这些结果可用于Smith预估器和线性自抗扰控制器参数的整定。
- Abstract:
-
A system with long time-delay is a typical difficulty experienced in industrial process control. When an advanced control method is applied to such a system, an ideal control effect can be obtained only by combining it with a traditional Smith predictor. In this paper, we address first-order inertial systems with long time-delay, investigate the combined design of a Smith predictor with the linear active disturbance rejection control (LADRC) technique, and discuss the system stability conditions and parameter perturbations. We prove that the closed-loop control system is stable when the parameters of the controlled object are identical to the Smith predictor parameters. Moreover, we deduce a sufficient condition for maintaining the stability of the control system when these parameters differ. In addition, using numerical simulation, we analyze the impacts of perturbation of the system and control parameters on the transient performance, stability margin, and disturbance rejection ability. These results can be used to tune the parameters of the Smith predictor and LADRC controller.
备注/Memo
收稿日期:2017-05-27。
基金项目:国家自然科学基金项目(61573199,61573197);天津市自然科学基金项目(14JCYBJC18700).
作者简介:王永帅,女,1993年生,硕士研究生,主要研究方向为自抗扰控制、预测控制;陈增强,男,1964年生,教授,博士生导师,主要研究方向为智能控制、预测控制、自抗扰控制。主持完成国家"863"基金和国家自然科学基金6项,获得省部级科技进步奖4次,发表学术论文200余篇;孙明玮,男,1972年生,教授,主要研究方向为飞行器制导与控制、自抗扰控制。主持国防科技攻关基金和国家自然科学基金4项,获得国防科技进步奖3次,发表学术论文50余篇。
通讯作者:陈增强.E-mail:chenzq@nankai.edu.cn.
更新日期/Last Update:
2018-08-25