[1]许敏,史荧中,葛洪伟,等.一种具有迁移学习能力的RBF-NN算法及其应用[J].智能系统学报,2018,13(6):959-966.[doi:10.11992/tis.201705021]
XU Min,SHI Yingzhong,GE Hongwei,et al.A RBF-NN algorithm with transfer learning ability and its application[J].CAAI Transactions on Intelligent Systems,2018,13(6):959-966.[doi:10.11992/tis.201705021]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
13
期数:
2018年第6期
页码:
959-966
栏目:
学术论文—机器学习
出版日期:
2018-10-25
- Title:
-
A RBF-NN algorithm with transfer learning ability and its application
- 作者:
-
许敏1,2, 史荧中2, 葛洪伟1, 黄能耿2
-
1. 江南大学 物联网技术学院, 江苏 无锡 214122;
2. 无锡职业技术学院 物联网技术学院, 江苏 无锡 214121
- Author(s):
-
XU Min1,2, SHI Yingzhong2, GE Hongwei1, HUANG Nenggeng2
-
1. School of Internet of things technology, Jiangnan University, Wuxi 214122, China;
2. School of Internet of things technology, Wuxi Institute of Technology, Wuxi 214121, China
-
- 关键词:
-
径向基函数神经网络; 迁移学习; 径向基函数中心向量; ε不敏感损失函数; 信息缺失
- Keywords:
-
radial basis function neural network; transfer learning; radial basis function vector; ε-insensitive loss function; missing information
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.201705021
- 摘要:
-
经典的径向基人工神经网络学习能逼近任意函数,因而应用广泛。但其存在的一个重要缺陷是,在已标签样本过少、不能反映数据集整体分布情况下,容易产生过拟合现象,从而导致泛化性能严重下降。针对上述问题,探讨具有迁移学习能力的径向基人工神经网络学习算法,该算法在引入ε不敏感损失函数和结构风险项的同时,学习源领域径向基函数的中心向量及核宽和源领域模型参数,通过充分学习历史源领域知识来弥补当前领域因已标签样本少而导致泛化能力下降的不足。将该算法应用于人造数据集和真实发酵数据集进行验证,和传统的RBF神经网络算法相比,所提算法在已标签样本少而存在数据缺失的场景下,具有更好的适应性。
- Abstract:
-
The classical radial basis function neural network (RBF-NN) is widely used as it can approximate any function. However, one of its main defects is that overfitting is likely to occur when there are too few labeled samples to reflect the overall distribution of datasets; this leads to a serious decline in its generalization ability. To solve the above problem, an artificial RBF-NN learning algorithm with transfer learning ability is discussed. The algorithm introduces the ε-insensitive loss function and the structural risk term and also learns the center vector and kernel width of the radial basis function as well as the parameters of the source domain model. The algorithm fully learns the knowledge in the historical source domain to compensate for its decline in generalization ability caused by the lack of labeled samples in the current field. To verify the algorithm, it is applied to an artificial dataset and real fermentation dataset. Compared with the traditional RBF-NN algorithm, the proposed algorithm has a better adaptability as regards less labeled samples and missing data.
备注/Memo
收稿日期:2017-05-17。
基金项目:国家自然科学基金项目(61572236);江苏省高等学校自然科学研究项目(18KJB520048);江苏高校“青蓝工程”项目(苏教师〔2016〕15号);江苏省“333高层次人才培养工程”项目(苏人才〔2016〕7号).
作者简介:许敏,女,1980年生,副教授,博士,主要研究方向为人工智能、模式识别,发表学术论文10余篇;史荧中,男,1970年生,副教授,博士,主要研究方向为人工智能、模式识别,参与多项省级以上科研项目,发表学术论文10余篇;葛洪伟,男,1967年生,教授,博士生导师,博士,主要研究方向为人工智能、模式识别、机器学习、图像处理与分析等。主持和承担国家自然科学基金等国家级项目和省部级项目近20项,获省部级科技进步奖多项。发表学术论文百余篇。
通讯作者:许敏.E-mail:applexu9027@126.com
更新日期/Last Update:
2018-12-25