[1]许敏,史荧中,葛洪伟,等.一种具有迁移学习能力的RBF-NN算法及其应用[J].智能系统学报,2018,13(6):959-966.[doi:10.11992/tis.201705021]
 XU Min,SHI Yingzhong,GE Hongwei,et al.A RBF-NN algorithm with transfer learning ability and its application[J].CAAI Transactions on Intelligent Systems,2018,13(6):959-966.[doi:10.11992/tis.201705021]
点击复制

一种具有迁移学习能力的RBF-NN算法及其应用

参考文献/References:
[1] MOODY J, DARKEN C J. Fast learning in networks of locally-tuned processing units[J]. Neural computation, 1989, 1(2):281-294.
[2] RYU D, LIANG Faming, MALLICK B K. Sea surface temperature modeling using radial basis function networks with a dynamically weighted particle filter[J]. Journal of the American statistical association, 2013, 108(501):111-123.
[3] 李方伟, 郑波, 朱江, 等. 一种基于AC-RBF神经网络的网络安全态势预测方法[J]. 重庆邮电大学学报:自然科学版, 2014, 26(5):576-581 LI Fangwei, ZHENG Bo, ZHU Jiang, et al. A method of network security situation prediction based on AC-RBF neural network[J]. Journal of Chongqing university of posts and telecommunications:natural science edition, 2014, 26(5):576-581
[4] 樊劲辉, 贾松敏, 李秀智. 基于RBF神经网络的全向智能轮椅自适应控制[J]. 华中科技大学学报:自然科学版, 2014, 42(2):111-115 FAN Jinhui, JIA Songmin, LI Xiuzhi. Adaptive control for omni-directional intelligent wheelchairs based on RBF neural network[J]. Journal of Huazhong university of science and technology:nature science edition, 2014, 42(2):111-115
[5] STASINAKIS C, SERMPINIS G, THEOFILATOS K, et al. Forecasting us unemployment with radial basis neural networks, Kalman filters and support vector regressions[J]. Computational economics, 2016, 47(4):569-587.
[6] PRATHIBA R, BALASINGHMOSES M, DEVARAJ D, et al. Multiple output radial basis function neural network with reduced input features for on-line estimation of available transfer capability[J]. Control engineering and applied informatics, 2016, 18(1):95-106.
[7] ALI S H A, OZAWA S, NAKAZATO J, et al. An online malicious spam email detection system using resource allocating network with locality sensitive hashing[J]. Journal of intelligent learning systems and applications, 2015, 7(2):55866.
[8] 韩敏, 穆云峰. 一种改进的RAN网络结构优化算法[J]. 控制与决策, 2007, 22(10):1177-1180 HAN Min, MU Yunfeng. Improved learning algorithm for optimizing RAN network structure[J]. Control and decision, 2007, 22(10):1177-1180
[9] PLATT J. A resource-allocating network for function interpolation[J]. Neural computation, 1991, 3(2):213-225.
[10] SARIMVEIS H, DOGANIS P, ALEXANDRIDIS A. A classification technique based on radial basis function neural networks[J]. Advances in engineering software, 2006, 37(4):218-221.
[11] RAITOHARJU J, KIRANYAZ S, GABBOUJ M. Training radial basis function neural networks for classification via class-specific clustering[J]. IEEE transactions on neural networks and learning systems, 2016, 27(12):2458-2471.
[12] PEDRYCZ W. Conditional fuzzy clustering in the design of radial basis function neural networks[J]. IEEE transactions on neural networks, 1998, 9(4):601-612.
[13] LACERDA E, DE CARVALHO A, LUDERMIR T. Evolutionary optimization of RBF networks[J]. International journal of neural systems, 2001, 11(3):287-294.
[14] SHEKHAR S, AMIN M B. Generalization by neural networks[J]. IEEE transactions on knowledge and data engineering, 1992, 4(2):177-185.
[15] ALEXANDRIDIS A, CHONDRODIMA E, SARIMVEIS H. Radial basis function network training using a nonsymmetric partition of the input space and particle swarm optimization[J]. IEEE transactions on neural networks and learning systems, 2013, 24(2):219-230.
[16] PAN S J, YANG Qiang. A survey on transfer learning[J]. IEEE transactions on knowledge and data engineering, 2010, 22(10):1345-1359.
[17] 张雅俊, 高陈强, 李佩, 等. 基于卷积神经网络的人流量统计[J]. 重庆邮电大学学报:自然科学版, 2017, 29(2):265-271 ZHANG Yajun, GAO Chenqiang, LI Pei, et al. Pedestrian counting based on convolutional neural network[J]. Journal of Chongqing university of posts and telecommunications:natural science edition, 2017, 29(2):265-271
[18] 桑庆兵, 邓赵红, 王士同, 等. 基于ε-不敏感准则和结构风险的鲁棒径向基函数神经网络学习[J]. 电子与信息学报, 2012, 34(6):1414-1419 SANG Qingbing, DENG Zhaohong, WANG Shitong, et al. ε-insensitive criterion and structure risk based radius-basis-function neural-network modeling[J]. Journal of electronics & information technology, 2012, 34(6):1414-1419
[19] 邓乃扬, 田英杰. 支持向量机:理论、算法与拓展[M]. 北京:科学出版社, 2009:63-80.
[20] 蒋亦樟, 邓赵红, 王士同. ML型迁移学习模糊系统[J]. 自动化学报, 2012, 38(9):1393-1409 JIANG Yizhang, DENG Zhaohong, WANG Shitong. Mamdani-Larsen type transfer learning fuzzy system[J]. Acta automatica sinica, 2012, 38(9):1393-1409
相似文献/References:
[1]王晓初,包芳,王士同,等.基于最小最大概率机的迁移学习分类算法[J].智能系统学报,2016,11(1):84.[doi:10.11992/tis.201505024]
 WANG Xiaochu,BAO Fang,WANG Shitong,et al.Transfer learning classification algorithms based on minimax probability machine[J].CAAI Transactions on Intelligent Systems,2016,11():84.[doi:10.11992/tis.201505024]
[2]王跃,杨燕,王红军.一种基于少量标签的改进迁移模糊聚类[J].智能系统学报,2016,11(3):310.[doi:10.11992/tis.201603046]
 WANG Yue,YANG Yan,WANG Hongjun.An improved transfer fuzzy clustering with few labels[J].CAAI Transactions on Intelligent Systems,2016,11():310.[doi:10.11992/tis.201603046]
[3]张艳霞,陈丹琪,韩莹,等.基宽灵敏度分析的径向基神经网络代理模型[J].智能系统学报,2014,9(2):259.[doi:10.3969/j.issn.1673-4785.201309009]
 ZHANG Yanxia,CHEN Danqi,HAN Ying,et al.Surrogate model of radial basis function networks based on width factor sensitivity analysis[J].CAAI Transactions on Intelligent Systems,2014,9():259.[doi:10.3969/j.issn.1673-4785.201309009]
[4]程旸,蒋亦樟,钱鹏江,等.知识迁移的极大熵聚类算法及其在纹理图像分割中的应用[J].智能系统学报,2017,12(2):179.[doi:10.11992/tis.201603005]
 CHENG Yang,JIANG Yizhang,QIAN Pengjiang,et al.A maximum entropy clustering algorithm based on knowledge transfer and its application to texture image segmentation[J].CAAI Transactions on Intelligent Systems,2017,12():179.[doi:10.11992/tis.201603005]
[5]莫宏伟,汪海波.基于Faster R-CNN的人体行为检测研究[J].智能系统学报,2018,13(6):967.[doi:10.11992/tis.201801025]
 MO Hongwei,WANG Haibo.Research on human behavior detection based on Faster R-CNN[J].CAAI Transactions on Intelligent Systems,2018,13():967.[doi:10.11992/tis.201801025]
[6]凌彤,杨琬琪,杨明.利用多模态U形网络的CT图像前列腺分割[J].智能系统学报,2018,13(6):981.[doi:10.11992/tis.201806012]
 LING Tong,YANG Wanqi,YANG Ming.Prostate segmentation in CT images with multimodal U-net[J].CAAI Transactions on Intelligent Systems,2018,13():981.[doi:10.11992/tis.201806012]
[7]张毅,刘芳君,胡磊.结合MPGA-RBFNN的一般机器人逆运动学求解[J].智能系统学报,2019,14(1):165.[doi:10.11992/tis.201805005]
 ZHANG Yi,LIU Fangjun,HU Lei.A general robot inverse kinematics solution based on MPGA-RBFNN[J].CAAI Transactions on Intelligent Systems,2019,14():165.[doi:10.11992/tis.201805005]
[8]余鹰,王乐为,吴新念,等.基于改进卷积神经网络的多标记分类算法[J].智能系统学报,2019,14(3):566.[doi:10.11992/tis.201804056]
 YU Ying,WANG Lewei,WU Xinnian,et al.A multi-label classification algorithm based on an improved convolutional neural network[J].CAAI Transactions on Intelligent Systems,2019,14():566.[doi:10.11992/tis.201804056]
[9]洪雁飞,魏本征,刘川,等.基于深度学习的椎间孔狭窄自动多分级研究[J].智能系统学报,2019,14(4):708.[doi:10.11992/tis.201806015]
 HONG Yanfei,WEI Benzheng,LIU Chuan,et al.Deep learning based automatic multi-classification algorithm for intervertebral foraminal stenosis[J].CAAI Transactions on Intelligent Systems,2019,14():708.[doi:10.11992/tis.201806015]
[10]鲁绪正,蔡恒进,林莉.基于Capsule网络的甲骨文构件识别方法[J].智能系统学报,2020,15(2):243.[doi:10.11992/tis.201904069]
 LU Xuzheng,CAI Hengjin,LIN Li.Recognition of Oracle Radical based on the Capsule network[J].CAAI Transactions on Intelligent Systems,2020,15():243.[doi:10.11992/tis.201904069]

备注/Memo

收稿日期:2017-05-17。
基金项目:国家自然科学基金项目(61572236);江苏省高等学校自然科学研究项目(18KJB520048);江苏高校“青蓝工程”项目(苏教师〔2016〕15号);江苏省“333高层次人才培养工程”项目(苏人才〔2016〕7号).
作者简介:许敏,女,1980年生,副教授,博士,主要研究方向为人工智能、模式识别,发表学术论文10余篇;史荧中,男,1970年生,副教授,博士,主要研究方向为人工智能、模式识别,参与多项省级以上科研项目,发表学术论文10余篇;葛洪伟,男,1967年生,教授,博士生导师,博士,主要研究方向为人工智能、模式识别、机器学习、图像处理与分析等。主持和承担国家自然科学基金等国家级项目和省部级项目近20项,获省部级科技进步奖多项。发表学术论文百余篇。
通讯作者:许敏.E-mail:applexu9027@126.com

更新日期/Last Update: 2018-12-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com