[1]许曈,凌有铸,陈孟元.一种融合DGSOM神经网络的仿生算法研究[J].智能系统学报,2017,12(3):405-412.[doi:10.11992/tis.201704038]
 XU Tong,LING Youzhu,CHEN Mengyuan.A bio-inspired algorithm integrated with DGSOM neural network[J].CAAI Transactions on Intelligent Systems,2017,12(3):405-412.[doi:10.11992/tis.201704038]
点击复制

一种融合DGSOM神经网络的仿生算法研究

参考文献/References:
[1] KOHONEN T. Self-organized formation of topologically correct feature maps[J]. Biological cybernetics, 1982, 43(1): 59-69.
[2] MARTINETZ T M, BERKOVICH S G, SCHULTEN K J. Neural-gas network for vector quantization and its application to time-series prediction[J]. IEEE transactions on neural networks, 1993,4(4): 558-569.
[3] 尹峻松, 胡德文, 陈爽,等. DSOM:一种基于NO时空动态扩散机理的新型自组织模型[J].中国科学E辑:信息科学,2004,34(10): 1094-1109.YIN Junsong, HU Dewen, CHEN Shuang, et al. DSOM: a new self-organization model based on NO space-time dynamic diffusion mechanism[J]. Science in China ser. E information sciences, 2004,34(10): 1094-1109.
[4] 王春东, 虞鹤峰, 王怀彬. Grey self-organizing map based intrusion detection[J]. Optoelectronics letters, 2009, 5(1): 64-68.
[5] 于乃功,王丽.双目立体视觉和GSOM相结合的机器人自主地图构建方法[J].计算机测量与控制, 2011, 19(11): 2810-2813.YU Naigong, WANG Li. Autonomous mapping for robot using a combination of binocular stereo vision and GSOM[J]. Computer measurement and control, 2011, 19(11): 2810-2813.
[6] MILFORD M, GEORGE A. Featureless visual processing for SLAM in changing outdoor environments[J]. Springer tracts in advanced robotics, 2014: 569-583.
[7] MILFORD M J, PRASSER D P, WYETH G F. Effect of representation size and visual ambiguity on RatSLAM system performance[C]//Australasian Conference on Robotics and Automation. Australian Robotics and Automation Society (ARAA), 2006: 1-8.
[8] MILFORD M, SCHULZ R, PRASSER D, et al. learning spatial concepts from RatSLAM representations[J]. Robotics and autonomous systems, 2007, 55(5):403-410.
[9] MILFORD M, WYETH G, PRASSER D. RatSLAM on the edge: revealing a coherent representation from an overloaded rat brain[C]//Ieee/rsj International Conference on Intelligent Robots and Systems, IROS 2006, October 9-15, 2006, Beijing, China. 2006:4060-4065.
[10] 王丽娟,陶璨,张光伟,等.小鼠初级听皮层SOM中间神经元突触输入的时空特性研究[J]. 第三军医大学学报, 2017, 39(5): 417-422.WANG Lijuan, TAO Can, ZHANG Guangwei, et al. Spatial-temporal characteristics of synaptic inputs received by SOM+ interneurons in mouse primary auditory cortex[J]. Journal of third military medical university, 2017,39(5): 417-422.
[11] 于乃功,方略,罗子维,等.大鼠脑海马结构认知机理及其在机器人导航中的应用[J].北京工业大学学报,2017, 43(3): 434-442.YU Naigong, FANG Lue, LUO Ziwei, et al. Cognitive mechanism of rat hippocampal formation and its application in robot navigation[J]. Journal of Beijing university of technology, 2017, 43(3): 434-442.
[12] 刘帅师, 程曦, 郭文燕,等. 深度学习方法研究新进展[J]. 智能系统学报, 2016, 11(5):567-577.LIU Shuaishi, CHENG Xi, GUO Wenyan,et al. Progress report on new research in deep learning[J]. CAAI transactions on intelligent systems, 2016, 11(5):567-577.
[13] 丁永生.计算智能的新框架:生物网络结构[J]. 智能系统学报, 2007, 2(2): 26-30.DING Yongsheng. A new scheme for computational intelligence: bio-network architecture[J]. CAAI transactions on intelligent systems, 2007, 2(2): 26-30.
[14] 芮小平,张立强.基于SOM的多维信息可视化研究[J].应用基础与工程科学学报, 2011, 19(3): 379-388.RUI Xiaoping, ZHANG Liqiang. Multi-dimensional information visualization based on SOM[J]. Journal of basic science and engineering, 2011, 19(3): 379-388.
[15] 尹柏强,何怡刚,朱彦卿.一种广义S变换及模糊SOM网络的电能质量多扰动检测和识别方法[J].中国电机工程学报, 2015, 35(4): 866-872.YIN baiqiang, HE Yigang, ZHU Yanqing. Detection and classification of power quality multi-disturbances based on generalized S-transform and fuzzy SOM neural network[J]. Proceedings of the CSEE,2015,35(4):866-872.
[16] 於东军,吴小俊, HANCOCK Edwin R,等.广义SOM及其在人脸性别识别中的应用[J].计算机学报, 2011, 34(9): 1719-1725.YU Dongjun, WU Xiaojun, HANCOCK Edwin R, et al. Generalized SOM with application to facial gender identification[J].Chinese journal of computers, 2011, 34(9): 1719-1725.
[17] 刘艳,陈丽安.基于SOM的真空断路器机械故障诊断[J].电工技术学报, 2017,32(5):49-54.LIU Yan, CHEN Li’an. Mechanical fault diagnosis of vacuum circuit breaker based on SOM[J]. Transactions of China electrotechnical society, 2017, 32(5): 49-54.
[18] 邱天宇, 申富饶, 赵金熙. 自组织增量学习神经网络综述[J]. 软件学报, 2016, 27(9): 2230-2247.QIU Tianyu, SHEN Furao, ZHAO Jinxi. Review of self-organizing incremental neural network[J]. Journal of software, 2016, 27(9): 2230-2247
[19] 赵建华, 李伟华. 有监督SOM神经网络在入侵检测中的应用[J]. 计算机工程, 2012, 38(12): 110-111.ZHAO Jianhua, LI Weihua. Application of supervised SOM neural network in intrusion detection[J]. Computer engineer, 2012, 38(12): 110-111.

备注/Memo

收稿日期:2017-04-25。
基金项目:安徽高校自然科学研究项目(KJ2016A794).
作者简介:许曈,男,1993年生,硕士研究生,主要研究方向为机器视觉和仿生导航算法;凌有铸,男,1962年生,研究生导师,主要研究方向为传感器信号处理和机器人地图构建等。主持省自然科学基金、省科技计划项目等10余项,获安徽省科学技术奖4项,发表学术论文60余篇;陈孟元,男,1984年生,副教授,主要研究方向为移动机器人地图构建及同步定位等。主持安徽省高等学校自然科学研究项目等10余项,发表学术论文30余篇,授权国家发明专利4项。
通讯作者:凌有铸.E-mail:lyz7985@163.com

更新日期/Last Update: 2017-06-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com