[1]毛华,史明.利用二元拟阵Kn图的一种建格方法[J].智能系统学报,2017,12(3):333-340.[doi:10.11992/tis.201704022]
MAO Hua,SHI Ming.A constructive method of lattice using the Kn diagram of binary matroid[J].CAAI Transactions on Intelligent Systems,2017,12(3):333-340.[doi:10.11992/tis.201704022]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
12
期数:
2017年第3期
页码:
333-340
栏目:
学术论文—智能系统
出版日期:
2017-06-25
- Title:
-
A constructive method of lattice using the Kn diagram of binary matroid
- 作者:
-
毛华, 史明
-
河北大学 数学与信息科学学院, 河北 保定 071002
- Author(s):
-
MAO Hua, SHI Ming
-
School of Mathematics and Information Science, Hebei University, Baoding 071002, China
-
- 关键词:
-
二元拟阵; 标准矩阵表示; Kn图; 二部图; 图论; 概念格; 形式背景; Hasse示图
- Keywords:
-
binary matroid; standard matrix representative; Kn diagram; bipartite graph; graph theory; concept lattice; formal context; Hasse diagram
- 分类号:
-
TP18
- DOI:
-
10.11992/tis.201704022
- 摘要:
-
由于交通网络纷繁复杂,难以直观分析和直接处理。若出行者根据自己喜好和习惯决定出行策略,则需对出行方案有清楚的了解。针对此问题,建立交通网络图——Kn模型,对具有带环路和重边路的复杂网络结构图,可以完全转化为Kn图处理。通过概念格理论,得到Hasse示图,方便人们对某些属性条件方案的提取,便于后续工作处理。对Kn图进行研究之后发现,在特定的多个属性影响下,会形成一个三角形圈,于是结合拟阵中二元拟阵的标准矩阵的定义,挖掘出一种特殊形式背景。根据这种形式背景的特殊性,给出基于二元拟阵的Kn图的概念格算法。结合生活中的例子,验证该算法可行性。由于模型具有这种普遍性,所有结果可推广到具有类似形式背景的其他领域研究中。
- Abstract:
-
Because of the complexity of traffic networks, it is difficult to directly analyze and deal with them. If some travelers wish to determine their travel strategy based on their preferences and habits, they should have a clear understanding of their travel plan. To address this problem, a traffic network, Kn model, was established in this study. It was used to elucidate how to transfer complex networks comprising loops or multiple edges to the Kn diagram. With the assistance of formal concept analysis, the corresponding Hasse diagram of the Kn model was provided. The Hasse diagram facilitates travelers to extract some attributes under certain preconditions, after which the travelers can easily continue their work. Hence, the study of the Kn diagram revealed that a triangle circle would form under some effects of specific multiple attributes. Thus, combining with the standard definition of the matrix for binary matroids, a special formal context was obtained. According to the particularity of the formal context, an algorithm was proposed based on the binary matroids for the Kn diagram. Utilizing an example, the feasibility of the proposed method was proven. Because the model is universal, the discussions of this research can be extended to other fields with similar formal context.
备注/Memo
收稿日期:2017-04-19。
基金项目:国家自然科学基金项目(61572011).
作者简介:毛华,女,1963年生,教授,博士后,美国《数学评论》评论员,河北省工业与应用数学学会理事,主要研究方向为计算机数学及其应用、拟阵理论、离散数学。已发表学术论文90余篇,其中被SCI、EI检索20余篇;史明,女,1989年生,硕士研究生,主要研究方向为网络优化、图论、拟阵理论、概念格。已发表学术论文2篇。
通讯作者:史明.E-mail:ming1254610676@163.com.
更新日期/Last Update:
2017-06-25