[1]温晓红,刘华平,阎高伟,等.基于超限学习机的非线性典型相关分析及应用[J].智能系统学报,2018,13(4):633-639.[doi:10.11992/tis.201703034]
WEN Xiaohong,LIU Huaping,YAN Gaowei,et al.Nonlinear canonical correlation analysis and application based on extreme learning machine[J].CAAI Transactions on Intelligent Systems,2018,13(4):633-639.[doi:10.11992/tis.201703034]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
13
期数:
2018年第4期
页码:
633-639
栏目:
学术论文—人工智能基础
出版日期:
2018-07-05
- Title:
-
Nonlinear canonical correlation analysis and application based on extreme learning machine
- 作者:
-
温晓红1, 刘华平2,3, 阎高伟1, 孙富春2,3
-
1. 太原理工大学 电气与动力工程学院, 山西 太原 030600;
2. 清华大学 计算机科学与技术系, 北京 100084;
3. 智能技术与系统国家重点实验室, 北京 100084
- Author(s):
-
WEN Xiaohong1, LIU Huaping2,3, YAN Gaowei1, SUN Fuchun2,3
-
1. College of Electrical and Power Engineering, Taiyuan University of Technology, Taiyuan 030600, China;
2. Department of Computer Science and Technology, Tsinghua University, Beijing 100084, China;
3. State Key Laboratory of Intelligent Technology and Systems, Beijing 100084, China
-
- 关键词:
-
典型相关分析; 超限学习机; 特征提取; 多模态融合; 机器抓取; 目标识别; RGB-D数据; 神经网络
- Keywords:
-
canonical correlation analysis; extreme learning machine; feature extraction; multi-modal fusion; robotic grasping; object recognition; RGB-D data; neural networks
- 分类号:
-
TP391.4
- DOI:
-
10.11992/tis.201703034
- 摘要:
-
典型相关分析是目前常用的研究两个变量间相关性的统计方法。针对线性典型相关分析难以准确揭示变量之间复杂关系的问题,提出一种基于超限学习机的非线性典型相关分析多模态特征提取方法。首先,采用超限学习机分别的对每个模态进行无监督特征学习,得到抽象的深度特征表示;然后将这些深度抽象特征通过典型相关分析极大化模态之间的相关性,同时得到两组相关变量,实现多模态数据的复杂非线性和高相关性表示。最后在康奈尔大学机器抓取公开数据集上进行实验验证,结果表明,所提出的方法与其他相关算法相比,训练速度得到显著提升。
- Abstract:
-
Canonical correlation analysis (CCA) is a statistical technique commonly used to determine the correlativity of two variables. It is difficult to accurately identify the complex underlying relationship between variables using linear CCA, so we propose a nonlinear CCA based on an extreme learning machine (ELM) for multi-modal feature extraction. First, to obtain abstract-depth feature representation, we use the ELM to perform unsupervised feature learning for each modality. Then, we use CCA to maximize the correlation between the nonlinear representations, thereby simultaneously obtaining two groups of related variables, and realize complex nonlinear and high-correlation representations of multi-modality data. Lastly, we conducted an experiment using the Cornell grasping dataset. The results show that, in comparison with other related algorithms, the proposed method significantly increases the training speed.
备注/Memo
收稿日期:2017-03-24。
基金项目:国家自然科学基金重点项目(U1613212);国家高技术研究发展计划项目(2015AA042306).
作者简介:温晓红,女,1993年生,硕士研究生,主要研究方向为智能控制、模式识别、多模态融合;刘华平,男,1976年生,副教授,博士生导师,主要研究方向为机器人感知、学习与控制,多模态信息融合;阎高伟,男,1970年生,教授,主要研究方向为复杂工业控制系统、智能控制理论及其应用、机器学习与软测量建模。
通讯作者:刘华平.E-mail:hpliu@tsinghua.edu.cn.
更新日期/Last Update:
2018-08-25