[1]窦林立,展正然.利用二部图生成概念格[J].智能系统学报,2018,13(5):687-692.[doi:10.11992/tis.201703026]
DOU Linli,ZHAN Zhengran.Constructing concept lattice using bipartite graph[J].CAAI Transactions on Intelligent Systems,2018,13(5):687-692.[doi:10.11992/tis.201703026]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
13
期数:
2018年第5期
页码:
687-692
栏目:
学术论文—人工智能基础
出版日期:
2018-09-05
- Title:
-
Constructing concept lattice using bipartite graph
- 作者:
-
窦林立, 展正然
-
中国地质大学长城学院 基础课教学部, 河北 保定 071002
- Author(s):
-
DOU Linli, ZHAN Zhengran
-
Basic Teaching Department, The Great Wall College, China University of Geosciences, Baoding 071002, China
-
- 关键词:
-
形式背景; 概念格; 二部图; 极大完全子图; 直接子概念; Hasse示图; 图论; 导出子图
- Keywords:
-
formal context; concept lattice; bipartite graph; maximum complete subgraph; direct subconcept; Hasse diagram; graph theory; induced subgraph
- 分类号:
-
TP18
- DOI:
-
10.11992/tis.201703026
- 摘要:
-
概念格作为一种有效的知识发现与数据处理的工具,在许多领域得到了广泛应用,概念格的构造在其应用中具有重要的意义。每个概念格的形式背景都可以对应一个二部图,本文通过二部图的极大完全子图的概念来生成概念格,给出了基于二部图的深度优先的概念格的迭代算法。首先,对形式背景进行必要的约简;其次,利用二部图的极大完全子图得到顶层概念的直接子概念;最后,通过求二部图的导出子图来简化形式背景,并得出每个概念的直接子概念和所有子概念,从而生成概念格。
- Abstract:
-
As an effective tool for knowledge discovery and data processing, concept lattices have been widely applied in many fields, and in these applications, it is important to efficiently construct concept lattice. The formal context of each concept lattice corresponds to a bipartite graph. In this paper, the maximum complete subgraph of a bipartite graph is used to generate a concept lattice, and then where an iterative algorithm with depth priority is proposed based on a bipartite graph. The process is as follows:first, a formal context is reduced; then, the direct subconcepts of the top concept are obtained using maximal complete-subgraph of bipartite graph; finally, through the derivation of the induced subgraph of bipartite graph to reduce the formal context, and find direct subconcepts and all subconcepts of every concept, then the concept lattice was established.
备注/Memo
收稿日期:2017-03-21。
基金项目:河北省高校科研基金项目(Z2015137).
作者简介:窦林立,女,1975年生,硕士研究生,讲师,主要研究方向为计算机数学、离散数学。参与完成多项省级和市级课题。发表学术论文6篇;展正然,女,1981年生,硕士研究生,讲师,主要研究方向为微分方程。发表学术论文9篇,被EI检索2篇,SCI检索1篇,出版教材1部。
通讯作者:窦林立.E-mail:1321407258@qq.com.
更新日期/Last Update:
2018-10-25