[1]陆海青,葛洪伟.自适应灰度加权的鲁棒模糊C均值图像分割[J].智能系统学报,2018,13(4):584-593.[doi:10.11992/tis.201701008]
 LU Haiqing,GE Hongwei.Adaptive gray-weighted robust fuzzy C-means algorithm for image segmentation[J].CAAI Transactions on Intelligent Systems,2018,13(4):584-593.[doi:10.11992/tis.201701008]
点击复制

自适应灰度加权的鲁棒模糊C均值图像分割

参考文献/References:
[1] BEZDEK J C. Pattern recognition with fuzzy objective function algorithms[M]. New York:Plenum Press, 1981.
[2] 唐文静, 许兆新, 张小峰. 峰值检测FCM算法的医学图像分割[J]. 智能系统学报, 2014, 9(5):584-589. TANG Wenjing, XU Zhaoxin, ZHANG Xiaofeng. Medical image segmentation based on FCM with peak detection[J]. CAAI transactions on intelligent systems, 2014, 9(5):584-589.
[3] 刘慧, 张彩明, 邓凯, 等. 改进局部自适应的快速FCM肺结节分割方法[J]. 计算机辅助设计与图形学学报, 2014, 26(10):1727-1736. LIU Hui, ZHANG Caiming, DENG Kai, et al. Research on fast FCM pulmonary nodule segmentation algorithm using improved self-adaption[J]. Journal of computer-aided design & computer graphics, 2014, 26(10):1727-1736.
[4] 丁晓峰, 何凯霖. 一种基于一致性分片FCM的图像分割算法[J]. 重庆邮电大学学报:自然科学版, 2017, 29(3):377-381. DING Xiaofeng, HE Kailin. A homogeneous pieces based FCM algorithm for image segmentation[J]. Journal of Chongqing university of posts and telecommunications:natural science edition, 2017, 29(3):377-381.
[5] XIANG Deliang, TANG Tao, HU Canbin, et al. A kernel clustering algorithm with fuzzy factor:application to SAR image segmentation[J]. IEEE geoscience and remote sensing letters, 2014, 11(7):1290-1294.
[6] LIU Guoying, ZHANG Yun, WANG Aimin. Incorporating adaptive local information into fuzzy clustering for image segmentation[J]. IEEE transactions on image processing, 2015, 24(11):3990-4000.
[7] SZILAGYI L, BENYO Z, SZILAGYI S M, et al. MR brain image segmentation using an enhanced fuzzy C-means algorithm[C]//Proceedings of the 25th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Cancun, Mexico, 2003:724-726.
[8] SIKKA K, SINHA N, SINGH P K, et al. A fully automated algorithm under modified FCM framework for improved brain MR image segmentation[J]. Magnetic resonance imaging, 2009, 27(7):994-1004.
[9] BENAICHOUCHE A N, OULHADJ H, SIARRY P. Improved spatial fuzzy c-means clustering for image segmentation using PSO initialization, Mahalanobis distance and post-segmentation correction[J]. Digital signal processing, 2013, 23(23):1390-1400.
[10] 孙立新, 张栩之, 邓先瑞, 等. 自适应果蝇算法优化模糊均值聚类算法图像分割[J]. 控制工程, 2016, 23(4):494-499. SUN Lixin, ZHANG Xuzhi, DENG Xianrui, et al. Image segmentation based on self-adaptive fruit fly algorithm optimizing fuzzy means clustering algorithm[J]. Control engineering of China, 2016, 23(4):494-499.
[11] ZHANG Daoqiang, CHEN Songcan, PAN Zhisong, et al. Kernel-based fuzzy clustering incorporating spatial constraints for image segmentation[C]//Proceedings of the International Conference on Machine Learning and Cybernetics. Xi’an, China, 2003:2189-2192.
[12] 王建英, 孙德山, 张永. 基于马氏距离的FCM图像分割算法[J]. 计算机工程与应用, 2010, 46(1):147-149. WANG Jianying, SUN Deshan, ZHANG Yong. Mahalanobis distance-based FCM image segmentation algorithm[J]. Computer engineering and applications, 2010, 46(1):147-149.
[13] AHMED M N, YAMANY S M, MOHAMED N, et al. A modified fuzzy c-means algorithm for bias field estimation and segmentation of MRI data[J]. IEEE transactions on medical imaging, 2002, 21(3):193-199.
[14] CHEN Songcan, ZHANG Daoqiang. Robust image segmentation using FCM with spatial constraints based on new kernel-induced distance measure[J]. IEEE transactions on systems, man, and cybernetics. part B:cybernetics, 2004, 34(4):1907-1916.
[15] CAI Weiling, CHEN Songcan, ZHANG Daoqiang. Fast and robust fuzzy c-means clustering algorithms incorporating local information for image segmentation[J].[J]. Pattern recognition, 2007, 40(3):825-838.
[16] LI Ming, LI Yunsong. Fuzzy-c-means clustering based on the gray and spatial feature for image segmentation[C]//Proceedings of the 2006 International Conference on Computational Intelligence and Security. Guangzhou, China, 2006:1641-1646.
[17] 车娜, 车翔玖, 高占恒, 等. 基于局部熵最小化的核磁共振脑图像二次分割算法[J]. 计算机研究与发展, 2010, 47(7):1294-1303. CHE Na, CHE Xiangjiu, GAO Zhanheng, et al. Secondary segmentation algorithm for magnetic resonance brain image based on local entropy minimization[J]. Journal of computer research and development, 2010, 47(7):1294-1303.
[18] 张建伟, 杨红, 陈允杰, 等. 局部熵驱动下的脑MR图像分割与偏移场恢复耦合模型[J]. 中国图象图形学报, 2013, 18(8):1011-1018. ZHANG Jianwei, YANG Hong, CHEN Yunjie, et al. Brain MR image segmentation and bias correction model based on local entropy[J]. Journal of image and graphics, 2013, 18(8):1011-1018.
[19] WANG Jianzhong, KONG Jun, LU Yinghua, et al. A modified FCM algorithm for MRI brain image segmentation using both local and non-local spatial constraints[J]. Computerized medical imaging and graphics, 2008, 32(8):685-698.
[20] MA Jingjing, TIAN Dayong, GONG Maoguo, et al. Fuzzy clustering with non-local information for image segmentation[J]. International journal of machine learning and cybernetics, 2014, 5(6):845-859.
[21] GUO Yanhui, SENGUR A. NCM:Neutrosophic c-means clustering algorithm[J]. Pattern recognition, 2015, 48(8):2710-2724.
[22] 崔西希, 吴成茂. 核空间中智模糊聚类及图像分割应用[J]. 中国图象图形学报, 2016, 21(10):1316-1327. CUI Xixi, WU Chengmao. Neutrosophic C-means clustering in kernel space and its application in image segmentation[J]. Journal of image and graphics, 2016, 21(10):1316-1327.
[23] 赵雪梅, 李玉, 赵泉华. 结合马尔可夫高斯模型的双邻域模糊聚类分割算法[J]. 计算机辅助设计与图形学学报, 2016, 28(4):615-623. ZHAO Xuemei, LI Yu, ZHAO Quanhua. A fuzzy clustering image segmentation algorithm with double neighborhood system combined with Markov Gaussian Model[J]. Journal of computer-aided design & computer graphics, 2016, 28(4):615-623.
[24] WU K L, YANG M S. Alternative c-means clustering algorithms[J]. Pattern recognition, 2002, 35(10):2267-2278.
[25] KRINIDIS S, CHATZIS V. A robust fuzzy local information C-means clustering algorithm[J]. IEEE transactions on image processing, 2010, 19(5):1328-1337.
[26] 沙秀艳, 何友, 王贞俭. 邻域灰度差加权的模糊C均值聚类图像分割算法[J]. 火力与指挥控制, 2008, 33(12):34-36. SHA Xiuyan, HE You, WANG Zhenjian. An image segmentation algorithm of weighted with neighborhood gray difference fuzzy C-means clustering[J]. Fire control and command control, 2008, 33(12):34-36.
[27] CHUANG K S, TZENG H L, CHEN S, et al. Fuzzy c-means clustering with spatial information for image segmentation[J]. Computerized medical imaging & graphics, 2006, 30(1):9-15.
[28] XIE X L, BENI G. A validity measure for fuzzy clustering[J]. IEEE transactions on pattern analysis and machine intelligence, 1991, 13(8):841-847.
[29] KWAN R K -S, EVANS A C, PIKE G B. MRI simulation-based evaluation of image-processing and classification methods[J]. IEEE transactions on medical imaging, 1999, 18(11):1085-1097.
[30] WANG Zhou, BOVIK A C, SHEIKH H R, et al. Image quality assessment:from error visibility to structural similarity[J]. IEEE transactions on image processing, 2004, 13(4):600-612.
相似文献/References:
[1]王科俊,郭庆昌.基于粒子群优化算法和改进的Snake模型的图像分割算法[J].智能系统学报,2007,2(1):53.
 WANG Ke-jun,GUO Qing-chang.Image segmentation algorithm based on the PSO and improved Snake model[J].CAAI Transactions on Intelligent Systems,2007,2():53.
[2]陈小波,程显毅.一种基于MAS的自适应图像分割方法[J].智能系统学报,2007,2(4):80.
 CHEN Xiao-bo,CHENG Xian-yi.An adaptive image segmentation technique based on multiAgent system[J].CAAI Transactions on Intelligent Systems,2007,2():80.
[3]刘咏梅,代丽洁.基于空间位置约束的K均值图像分割[J].智能系统学报,2010,5(1):67.
 LIU Yong-mei,DAI Li-jie.An improved method of Kmeans image segmentation based on spatial position information[J].CAAI Transactions on Intelligent Systems,2010,5():67.
[4]吴一全,纪守新.灰度熵和混沌粒子群的图像多阈值选取[J].智能系统学报,2010,5(6):522.
 WU Yi-quan,JI Shou-xin.Multithreshold selection for an image based on gray entropy and chaotic particle swarm optimization[J].CAAI Transactions on Intelligent Systems,2010,5():522.
[5]尚倩,阮秋琦,李小利.双目立体视觉的目标识别与定位[J].智能系统学报,2011,6(4):303.
 SHANG Qian,RUAN Qiuqi,LI Xiaoli.Target recognition and location based on binocular stereo vision[J].CAAI Transactions on Intelligent Systems,2011,6():303.
[6]胡光龙,秦世引.动态成像条件下基于SURF和Mean shift的运动目标高精度检测[J].智能系统学报,2012,7(1):61.
 HU Guanglong,QIN Shiyin.High precision detection of a mobile object under dynamic imaging based on SURF and Mean shift[J].CAAI Transactions on Intelligent Systems,2012,7():61.
[7]马慧,王科俊.采用旋转校正的指静脉图像感兴趣区域提取方法[J].智能系统学报,2012,7(3):230.
 MA Hui,WANG Kejun.A region of interest extraction method using rotation rectified finger vein images[J].CAAI Transactions on Intelligent Systems,2012,7():230.
[8]尹雨山,王李进,尹义龙,等.回溯搜索优化算法辅助的多阈值图像分割[J].智能系统学报,2015,10(1):68.[doi:10.3969/j.issn.1673-4785.201410008]
 YIN Yushan,WANG Lijin,YIN Yilong,et al.Backtracking search optimization algorithm assisted multilevel threshold for image segmentation[J].CAAI Transactions on Intelligent Systems,2015,10():68.[doi:10.3969/j.issn.1673-4785.201410008]
[9]吴一全,王凯,曹鹏祥.蜂群优化的二维非对称Tsallis交叉熵图像阈值选取[J].智能系统学报,2015,10(1):103.[doi:10.3969/j.issn.1673-4785.201403040]
 WU Yiquan,WANG Kai,CAO Pengxiang.Two-dimensional asymmetric tsallis cross entropy image threshold selection using bee colony optimization[J].CAAI Transactions on Intelligent Systems,2015,10():103.[doi:10.3969/j.issn.1673-4785.201403040]
[10]龙鹏,鲁华祥.方差不对称先验信息引导的全局阈值分割方法[J].智能系统学报,2015,10(5):663.[doi:10.11992/tis.201412022]
 LONG Peng,LU Huaxiang.Global threshold segmentation technique guided by prior knowledge with asymmetric variance[J].CAAI Transactions on Intelligent Systems,2015,10():663.[doi:10.11992/tis.201412022]

备注/Memo

收稿日期:2017-01-11。
基金项目:江苏省普通高校研究生科研创新计划项目(KYLX16_0781,KYLX16_0782);江苏高校优势学科建设工程资助项目(PAPD).
作者简介:陆海青,男,1992年生,硕士研究生,主要研究方向为图像处理和模式识别;葛洪伟,男,1967年生,教授,博士生导师,博士,主要研究方向为人工智能与模式识别、机器学习、图像处理与分析。主持和承担国家自然科学基金等国家级项目和省部级项目近20项,获省部级科技进步奖多项。发表学术论文百余篇。
通讯作者:葛洪伟.E-mail:ghw8601@163.com.

更新日期/Last Update: 2018-08-25
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com