[1]冯柳伟,常冬霞,邓勇,等.最近最远得分的聚类性能评价指标[J].智能系统学报,2017,12(1):67-74.[doi:10.11992/tis.201611007]
 FENG Liuwei,CHANG Dongxia,DENG Yong,et al.A clustering evaluation index based on the nearest and furthest score[J].CAAI Transactions on Intelligent Systems,2017,12(1):67-74.[doi:10.11992/tis.201611007]
点击复制

最近最远得分的聚类性能评价指标

参考文献/References:
[1] 刘恋, 常冬霞, 邓勇. 动态小生境人工鱼群算法的图像分割[J]. 智能系统学报, 2015, 10(5): 669-674. LIU Lian, CHANG Dongxia, DENG Yong. An image segmentation method based on dynamic niche artificial fish-swarm algorithm[J]. CAAI transactions on intelligent systems, 2015, 10(5): 669-674.
[2] NIKOLAOU T G, KOLOKOTSA D S, STAVRAKAKIS G S, et al. On the application of clustering techniques for office buildings’ energy and thermal comfort classification[J]. IEEE transactions on smart grid, 2012, 3(4): 2196-2210.
[3] CHANG Hong, YEUNG D Y. Robust path-based spectral clustering with application to image segmentation[C]//Proceedings of the Tenth IEEE International Conference on Computer Vision. Beijing, China, 2005, 1: 278-285.
[4] SHI Jianbo, MALIK J. Normalized cuts and image segmentation[J]. IEEE transactions on pattern analysis and machine intelligence, 2000, 22(8): 888-905.
[5] XIE X L, BENI G. A validity measure for Fuzzy clustering[J]. IEEE transactions on pattern analysis and machine intelligence, 1991, 13(8): 841-847.
[6] PAL N R, BEZDEK J C. On cluster validity for the fuzzy c-means model[J]. IEEE transactions on fuzzy systems, 1995, 3(3): 370-379.
[7] 郑宏亮, 徐本强, 赵晓慧, 等. 新的模糊聚类有效性指标[J]. 计算机应用, 2014, 34(8): 2166-2169. ZHENG Hongliang, XU Benqiang, ZHAO Xiaohui, et al. Novel validity index for fuzzy clustering[J]. Journal of computer applications, 2014, 34(8): 2166-2169.
[8] 岳士弘, 黄媞, 王鹏龙. 基于矩阵特征值分析的模糊聚类有效性指标[J]. 天津大学学报: 自然科学与工程技术版, 2014, 47(8): 689-696. YUE Shihong, HUANG Ti, WANG Penglong. Matrix eigenvalue analysis-based clustering validity index[J]. Journal of Tianjin university: science and technology, 2014, 47(8): 689-696.
[9] 卿铭, 孙晓梅. 一种新的聚类有效性函数: 模糊划分的模糊熵[J]. 智能系统学报, 2015, 10(1): 75-80. QING Mei, SUN Xiaomei. A new clustering effectiveness function: fuzzy entropy of fuzzy partition[J]. CAAI transactions on intelligent systems, 2015, 10(1): 75-80.
[10] 王开军, 李健, 张军英, 等. 聚类分析中类数估计方法的实验比较[J]. 计算机工程, 2008, 34(9): 198-199, 202. WANG Kaijun, LI Jian, ZHANG Junying, et al. Experimental comparison of clusters number estimation for cluster analysis[J]. Computer engineering, 2008, 34(9): 198-199, 202.
[11] 王勇, 唐靖, 饶勤菲, 等. 高效率的K-means最佳聚类数确定算法[J]. 计算机应用, 2014, 34(5): 1331-1335. WANG Yong, TANG Jing, RAO Qinfei, et al. High efficient K-means algorithm for determining optimal number of clusters[J]. Journal of computer applications, 2014, 34(5): 1331-1335.
[12] CALI?SKI T, HARABASZ J. A dendrite method for cluster analysis[J]. Communications in statistics, 1974, 3(1): 1-27.
[13] DAVIES D L, BOULDIN D W. A cluster separation measure[J]. IEEE transactions on pattern analysis and machine intelligence, 1979, PAMI-1(2): 224-227.
[14] DIMITRIADOU E, DOLNICˇAR S, WEINGESSEL A. An examination of indexes for determining the number of clusters in binary data sets[J]. Psychometrika, 2002, 67(1): 137-159.
[15] KRZANOWSKI W J, LAI Y T. A criterion for determining the number of groups in a data set using sum-of-squares clustering[J]. Biometrics, 1988, 44(1): 23-34.
[16] 周世兵, 徐振源, 唐旭清. K-means算法最佳聚类数确定方法[J]. 计算机应用, 2010, 30(8): 1995-1998. ZHOU Shibing, XU Zhenyuan, TANG Xuqing. Method for determining optimal number of clusters in K-means clustering algorithm[J]. Journal of computer applications, 2010, 30(8): 1995-1998.
[17] KAPP A V, TIBSHIRANI R. Are clusters found in one dataset present in another dataset[J]. Biostatistics, 2007, 8(1): 9-31.
[18] 周世兵. 聚类分析中的最佳聚类数确定方法研究及应用[D]. 无锡: 江南大学, 2011. ZHOU Shibing. Research and application on determining optimal number of cluster in cluster analysis[D]. Wuxi: Jiangnan University, 2011.
[19] Gower J C, Ross G J S. Minimum spanning trees and single linkage cluster analysis[J]. Journal of the royal statistical society, 1969, 18(1):54-64.
[20] MACQUEEN J. Some methods for classification and analysis of multivariate observations[C]//Proceedings of the 5th Berkeley Symposium on Mathematical Statistics and Probability. Berkeley, USA, 1967: 281-297.

备注/Memo

收稿日期:2016-11-7;改回日期:。
基金项目:国家自然科学基金“重点”项目(61532005).
作者简介:冯柳伟,女,1992年生,硕士研究生,研究方向为聚类算法;常冬霞,女,1977年生,副教授,硕士生导师,主要研究方向为进化计算、非监督分类算法、图像分割以及图像分类。发表学术论文10余篇,其中SCI检索5篇,EI检索2篇;邓勇,男,1974年生,副研究员,博士,主要研究方向为智能信息处理、数据库系统技术及应用等。主持和参与国家“863”计划1项,北京市自然科学基金项目1项。发表学术论文20余篇,其中收录10余篇。
通讯作者:常冬霞.E-mail:dxchang@bjtu.edu.cn.

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com