[1]张玉玲,尹传环.依特征频率的安卓恶意软件异常检测的研究[J].智能系统学报,2018,13(2):168-173.[doi:10.11992/tis.201609016]
ZHANG Yuling,YIN Chuanhuan.Android malware outlier detection based on feature frequency[J].CAAI Transactions on Intelligent Systems,2018,13(2):168-173.[doi:10.11992/tis.201609016]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
13
期数:
2018年第2期
页码:
168-173
栏目:
学术论文—智能系统
出版日期:
2018-04-15
- Title:
-
Android malware outlier detection based on feature frequency
- 作者:
-
张玉玲, 尹传环
-
北京交通大学 计算机与信息技术学院, 北京 100044
- Author(s):
-
ZHANG Yuling, YIN Chuanhuan
-
School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China
-
- 关键词:
-
安卓系统; 恶意软件; 数据挖掘; 异常检测; svdd; 隐含特征; 单分类器; 特征频率
- Keywords:
-
Android system; malware; data mining; abnormal detection; svdd; implicit characteristics; single classifier; feature frequency
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.201609016
- 摘要:
-
Android系统由于开源性和可移植性等优点,成为市场占有率最高的移动操作系统。针对Android的各种攻击也层出不穷,面向Android的恶意软件检测已成为近些年移动安全领域非常重要的一个环节。面临的问题包括恶意软件收集困难,异常样本和正常样本比例不平衡。为了有效应对上述问题,提出了Droid-Saf框架,框架中提出了一种挖掘数据隐含特征的数据处理方案;把样本特征包含的隐藏信息当作新的特征;建模时将样本特征融入算法当中,建立动态的松弛变量。应用静态分析方法反编译apk,用改进的svdd单分类器分类,克服了恶意软件检测系统中非正常软件收集困难的不足,降低了异常检测的漏报率和误判率。实验结果验证了该算法的有效性和适用性。
- Abstract:
-
Due to the advantages of open source and portability, Android has become a mobile OS with the largest market share. Various attacks toward Android also emerge in endlessly, the Android-oriented detection for malwares has become a quite important link recently in the field of mobile safety. The problems to be faced include difficult collection of malicious software, imbalanced proportion of the abnormal samples and normal samples. In order to effectively overcome the above difficulties, Droid-Saf framework was proposed, a data processing scheme revealing the implicit characteristics of data was proposed in the framework; the hidden information contained in the sample was treated as a new feature; in modeling, the sample features were integrated into the algorithm and dynamic slack variables were established. Static analytic method was applied to decompile apk, the improved svdd single classifier was used for classification, the deficiency of difficult collection of abnormal software in the system for detecting malicious software was overcome, the rate of missing report and the misjudgment rate of abnormal detection were lowered. The Experimental results verified the effectiveness and applicability of the algorithm.
备注/Memo
收稿日期:2016-09-14。
基金项目:国家自然科学基金项目(61105056).
作者简介:张玉玲,女,1990年生,硕士研究生,主要研究方向为机器学习;尹传环,男,1976年生,副教授,主要研究方向为网络安全(入侵检测)、数据挖掘、机器学习(支持向量机)。
通讯作者:尹传环.E-mail:chhyin@bjtu.edu.cn.
更新日期/Last Update:
1900-01-01