[1]乔俊飞,安茹,韩红桂.基于相对贡献指标的自组织RBF神经网络的设计[J].智能系统学报,2018,13(2):159-167.[doi:10.11992/tis.201608009]
QIAO Junfei,AN Ru,HAN Honggui.Design of self-organizing RBF neural network based on relative contribution index[J].CAAI Transactions on Intelligent Systems,2018,13(2):159-167.[doi:10.11992/tis.201608009]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
13
期数:
2018年第2期
页码:
159-167
栏目:
学术论文—人工智能基础
出版日期:
2018-04-15
- Title:
-
Design of self-organizing RBF neural network based on relative contribution index
- 作者:
-
乔俊飞1,2, 安茹1,2, 韩红桂1,2
-
1. 北京工业大学 电子信息与控制工程学院, 北京 100124;
2. 计算智能与智能系统北京市重点实验室, 北京 100124
- Author(s):
-
QIAO Junfei1,2, AN Ru1,2, HAN Honggui1,2
-
1. College of Electronic Information and Control Engineering, Beijing University of Technology, Beijing 100124, China;
2. Beijing Key Laboratory of Computation Intelligence and Intelligence System, Beijing 100124, China
-
- 关键词:
-
RBF神经网络; 相对贡献指标; 改进的LM算法; 结构设计; 出水氨氮; 收敛速度; 预测精度
- Keywords:
-
RBF neural network; relative contribution index; improved LM algorithm; structure design; ammonia and nitrogen effluent parameters; convergence speed; prediction accuracy
- 分类号:
-
TP183
- DOI:
-
10.11992/tis.201608009
- 摘要:
-
针对RBF(radial basis function)神经网络的结构和参数设计问题,本文提出了一种基于相对贡献指标的自组织RBF神经网络的设计方法。首先,提出一种基于相对贡献指标(relative contribution,RC)的网络结构设计方法,利用隐含层输出对网络输出的相对贡献来判断是否增加或删减RBF网络相应的隐含层节点,并且对神经网络结构调整过程的收敛性进行证明。其次,采用改进的LM(Levenberg-Marquardt algorithm)算法对调整后的网络参数进行更新,使网络具有较少的训练时间和较快的收敛速度。最后,对提出的设计方法进行非线性函数仿真和污水处理出水参数氨氮建模,仿真结果表明,RBF神经网络能够根据研究对象自适应地动态调整RBF结构和参数,具有较好的逼近能力和更高的预测精度。
- Abstract:
-
A design method for a self-organizing RBF Neural Network based on the Relative Contribution index is proposed with the aim of performing the structural design and parameter optimization of the Radial Basis Function (RBF) neural network. First, a self-organizing RBF network design method based on the Relative Contribution (RC) index is proposed. The relative contribution of the output of the hidden layer to the network output was used in order to assess whether a node of the hidden layer corresponding to the RBF network was inserted or pruned. Additionally, the convergence of the adjustment process of the neural structure was proven. Secondly, the adjusted network parameters were updated by the improved Levenberg-Marquardt (LM) algorithm in order to reduce the training time and increase the convergence speed of the network. Finally, the proposed algorithm was used in the simulation of the nonlinear function, and the modeling of the ammonia and nitrogen sewage effluent parameters. The simulation results revealed that the structure and parameters of the RBF neural network could be adjusted adaptively and dynamically according to the object under investigation, and that they had excellent approximation ability and higher prediction accuracy.
备注/Memo
收稿日期:2016-08-29。
基金项目:国家自然科学基金重点项目(61533002,61225016);北京市教育委员会科研计划项目(km201410005002);高等学校博士学科点基金项目(20131103110016).
作者简介:乔俊飞,男,1968年生,教授,博士生导师。主要研究方向为智能信息处理、智能优化控制。获教育部科技进步奖一等奖和北京市科学技术奖三等奖各1项,获得授权国家发明专利12项。发表学术论文近70篇,被SCI检索15篇;安茹,女,1990年生,硕士研究生,主要研究方向为智能控制理论及应用、非线性系统建模;韩红桂,男,1983年生,教授,博士生导师,主要研究方向为污水处理过程建模、优化与控制。获得授权国家发明专利13项,授权实用新型专利3项,授权软件著作权11项;研究成果获教育部科学技术进步奖一等奖等。近5年来发表学术论文35篇,撰写专著1部。
通讯作者:乔俊飞.E-mail:anru@emails.bjut.edu.cn.
更新日期/Last Update:
1900-01-01