[1]卞则康,王士同.基于混合距离学习的鲁棒的模糊C均值聚类算法[J].智能系统学报,2017,12(4):450-458.[doi:10.11992/tis.201607019]
BIAN Zekang,WANG Shitong.Robust FCM clustering algorithm based on hybrid-distance learning[J].CAAI Transactions on Intelligent Systems,2017,12(4):450-458.[doi:10.11992/tis.201607019]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
12
期数:
2017年第4期
页码:
450-458
栏目:
学术论文—机器学习
出版日期:
2017-08-25
- Title:
-
Robust FCM clustering algorithm based on hybrid-distance learning
- 作者:
-
卞则康, 王士同
-
江南大学 数字媒体学院, 江苏 无锡 214122
- Author(s):
-
BIAN Zekang, WANG Shitong
-
School of Digital Media, Jiangnan University, Wuxi 214122, China
-
- 关键词:
-
距离度量; FCM聚类算法; 成对约束; 辅助信息; 混合距离; 半监督; GIFP-FCM; 鲁棒性
- Keywords:
-
distance metric; FCM clustering algorithm; pairwise constraints; side information; hybrid distance; semi-supervised; GIFP-FCM; robustness
- 分类号:
-
TP181
- DOI:
-
10.11992/tis.201607019
- 摘要:
-
距离度量对模糊聚类算法FCM的聚类结果有关键性的影响。实际应用中存在这样一种场景,聚类的数据集中存在着一定量的带标签的成对约束集合的辅助信息。为了充分利用这些辅助信息,首先提出了一种基于混合距离学习方法,它能利用这样的辅助信息来学习出数据集合的距离度量公式。然后,提出了一种基于混合距离学习的鲁棒的模糊C均值聚类算法(HR-FCM算法),它是一种半监督的聚类算法。算法HR-FCM既保留了GIFP-FCM(Generalized FCM algorithm with improved fuzzy partitions)算法的鲁棒性等性能,也因为所采用更为合适的距离度量而具有更好的聚类性能。实验结果证明了所提算法的有效性。
- Abstract:
-
The distance metric plays a vital role in the fuzzy C-means clustering algorithm. In actual applications, there is a practical scenario in which the clustered data have a certain amount of side information, such as pairwise constraints with labels. To sufficiently utilize this side information, first, we propose a learning method based on hybrid distance, in which side information can be utilized to attain a distance metric formula for the data set. Next, we propose a robust fuzzy C-means clustering algorithm (HR-FCM algorithm) based on hybrid-distance learning, which is semi-supervised. The HR-FCM inherits the robustness of the GIFP-FCM (generalized FCM algorithm with improved fuzzy partitions) and has better clustering performance due to the more appropriate distance metric. The experimental results confirm the effectiveness of the proposed algorithm.
备注/Memo
收稿日期:2016-07-23。
基金项目:国家自然科学基金项目(61272210).
作者简介:卞则康,男,1993年生,硕士研究生,主要研究方向为人工智能和模式识别;王士同,男,1964年生,教授,博士生导师,主要研究方向为人工智能与模式识别。发表学术论文近百篇,其中被SCI、EI检索50余篇。
通讯作者:卞则康,E-mail:bianzekang@163.com.
更新日期/Last Update:
2017-08-25