[1]王晓燕,鲁华祥,金敏,等.基于相关性的小波熵心电信号去噪算法[J].智能系统学报,2016,11(6):827-834.[doi:10.11992/tis.201611017]
 WANG Xiaoyan,LU Huaxiang,JIN Min,et al.Wavelet entropy denoising algorithm of electrocardiogram signals based on correlation[J].CAAI Transactions on Intelligent Systems,2016,11(6):827-834.[doi:10.11992/tis.201611017]
点击复制

基于相关性的小波熵心电信号去噪算法

参考文献/References:
[1] 赵艳娜, 魏珑, 徐舫舟, 等. 基于小波变换的心电信号去噪综合算法[J]. 现代生物医学进展, 2009, 9(16):3128-3130. ZHAO Yanna, WEI Long, XU Fangzhou, et al. ECG signal denoising algorithm based on wavelet transform[J]. Progress in modern biomedicine, 2009, 9(16):3128-3130.
[2] HARITHA C, GANESAN M, SUMESH E P. A survey on modern trends in ECG noise removal techniques[C]//Proceedings of 2016 International Conference on Circuit, Power and Computing Technologies (ICCPCT). Nagercoil:IEEE, 2016:1-7.
[3] 赵志华, 许爱华. 基于形态学的ECG小波自适应去噪算法[J]. 计算机工程与设计, 2008, 29(8):2140-2142. ZHAO Zhihua, XU Aihua. ECG adaptive wavelet transform of denoising algorithm based on morphology[J]. Computer engineering and design, 2008, 29(8):2140-2142.
[4] TAI Shenchuan, SUN C C, YAN W C. A 2-D ECG compression method based on wavelet transform and modified SPIHT[J]. IEEE transactions on biomedical engineering, 2005, 52(6):999-1008.
[5] 杨思军, 郝继飞, 闫文杰, 等. 小波滤波与QRS波检测[J]. 计算机工程与应用, 2011, 47(12):239-241. YANG Sijun, HAO Jifei, YAN Wenjie, et al. Wave filtering and QRS detection[J]. Computer engineering and applications, 2011, 47(12):239-241.
[6] DONOHO D L. denoising by soft-thresholding[J]. IEEE transactions on information theory, 1995, 41(3):613-627.
[7] AGANTE P M, DE SA J P M. ECG noise filtering using wavelets with soft-thresholding methods[C]//Proceedings of 1999 Computers in Cardiology. Hannover:IEEE, 1999, 26:523-538.
[8] 侯宏花, 桂志国. 基于小波熵的心电信号去噪处理[J]. 中国生物医学工程学报, 2010, 29(1):22-28, 34. HOU Honghua, GUI Zhiguo. Denosing processing of ECG signal based on wavelet entropy[J]. Chinese journal of biomedical engineering, 2010, 29(1):22-28, 34.
[9] 欧阳波, 程栋, 王玲. 改进小波阈值算法在心电信号去噪中的应用[J]. 计算机工程与应用, 2015, 51(4):213-217. OUYANG Bo, CHENG Dong, WANG Ling. Improved wavelet threshold algorithm in application of ECG signal de-noising[J]. Computer engineering and applications, 2015, 51(4):213-217.
[10] LI Nianqiang, LI Ping. An improved algorithm based on EMD-wavelet for ECG signal de-nosing[C]//Proceedings of 2009 International Joint Conference on Computational Sciences and Optimization. Sanya, China:IEEE, 2009, 1:825-827.
[11] MALLAT S. 信号处理的小波导引[M]. 北京:机械工业出版社, 2003.
[12] 刘霞, 黄阳, 黄敬, 等. 基于经验模态分解(EMD)的小波熵阈值地震信号去噪[J]. 吉林大学学报:地球科学, 2016, 46(1):262-269. LIU Xia, HUANG Yang, HUANG Jing, et al. Wavelet entropy threshold seismic signal denoising based on empirical mode decomposition (EMD)[J]. Journal of Jilin university:earth science edition, 2016, 46(1):262-269.
[13] 李文, 刘霞, 段玉波, 等. 基于小波熵与相关性相结合的小波模极大值地震信号去噪[J]. 地震学报, 2012, 34(6):841-850. LI Wen, LIU Xia, DUAN Yubo, et al. Wavelet modulus maxima denoising of seismic signals based on combined wavelet entropy and correlation[J]. Acta seismologica sinica, 2012, 34(6):841-850.
[14] ROSSO O A, BLANCO S, YORDANOVA J, et al. Wavelet entropy:a new tool for analysis of short duration brain electrical signals[J]. Journal of neuroscience methods, 2001, 105(1):65-75.
[15] 朱泽煌, 胡广书, 郭恒, 等. MIT-BIH心电数据库的开发及用作检测标准[J]. 中国生物医学工程学报, 1993, 12(4):244-249, 243.
[16] 徐效文, 曾超, 崔松野, 等. MIT-BIH数据库心电数据重采样研究[J]. 计算机工程与应用, 2011, 47(8):245-248. XU Xiaowen, ZENG Chao, CUI Songye, et al. Research on resampling of ECG data from MIT-BIH database[J]. Computer engineering and applications, 2011, 47(8):245-248.
相似文献/References:
[1]武加文,李光辉.基于GABP-KF的WSN数据漂移盲校准算法[J].智能系统学报,2019,14(2):254.[doi:10.11992/tis.201712003]
 WU Jiawen,LI Guanghui.GABP-KF-based blind calibration algorithm of data drift in wireless sensor networks[J].CAAI Transactions on Intelligent Systems,2019,14():254.[doi:10.11992/tis.201712003]
[2]朱占龙,马艳玲,董建彬,等.融入类贡献抑制因子的灰度级模糊C均值图像分割[J].智能系统学报,2021,16(4):641.[doi:10.11992/tis.202009019]
 ZHU Zhanlong,MA Yanling,DONG Jianbin,et al.Gray level-based fuzzy C-means algorithm for image segmentation with inhibitors of cluster contribution[J].CAAI Transactions on Intelligent Systems,2021,16():641.[doi:10.11992/tis.202009019]
[3]王鑫,田甜,田金文.基于背景建模的VideoSAR动目标阴影检测方法[J].智能系统学报,2022,17(1):59.[doi:10.11992/tis.202107019]
 WANG Xin,TIAN Tian,TIAN Jinwen.Moving target shadow detection in VideoSAR based on background modeling[J].CAAI Transactions on Intelligent Systems,2022,17():59.[doi:10.11992/tis.202107019]

备注/Memo

收稿日期:2016-11-15。
基金项目:中国科学院战略性先导专项(xdb02080002);青年自然科学基金项目(61401423);中国科学院国防实验室基金项目(CXJJ-16S076).
作者简介:王晓燕,女,1992年,硕士研究生,主要研究方向为信号处理、机器学习;鲁华祥,男,1965年,研究员,博士生导师,中国人工智能学会"神经网络与计算智能"专业委员会主任、中科院半导体所高速电路与神经网络实验室主任,主要研究方向为类脑神经计算方法、微电子类神经计算芯片和系统研究、不确定性及非完全信息处理。获北京市科学技术进步一等奖、"中国科学院盈科优秀青年学者奖"、国家发明三等奖、"国家‘八五’科技攻关重大科技成果奖"、"95电子十大科技成果奖"、全军科技进步二等奖等奖励。发表学术论文30余篇,合作出版专著1本,获授权发明专利10项;金敏,女,1985年,助理研究员,主要研究方向为信号处理、智能计算。
通讯作者:鲁华祥.E-mail:luhx@semi.ac.cn.

更新日期/Last Update: 1900-01-01
Copyright © 《 智能系统学报》 编辑部
地址:(150001)黑龙江省哈尔滨市南岗区南通大街145-1号楼 电话:0451- 82534001、82518134 邮箱:tis@vip.sina.com