[1]刘柏森,张晔,张磊.一种用于大型舰船总体要素优化设计的约束多目标分解进化算法[J].智能系统学报,2016,11(5):635-640.[doi:10.11992/tis.201605006]
LIU Baisen,ZHANG Ye,ZHANG Lei.A constrained multi-objective decomposition evolutionary algorithmfor the overall element optimization design of large ship[J].CAAI Transactions on Intelligent Systems,2016,11(5):635-640.[doi:10.11992/tis.201605006]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
11
期数:
2016年第5期
页码:
635-640
栏目:
学术论文—智能系统
出版日期:
2016-11-01
- Title:
-
A constrained multi-objective decomposition evolutionary algorithmfor the overall element optimization design of large ship
- 作者:
-
刘柏森1,2, 张晔1, 张磊3
-
1. 哈尔滨工业大学 电子与信息工程学院, 黑龙江 哈尔滨 150000;
2. 黑龙江工程学院 电气与信息工程学院, 黑龙江 哈尔滨 150050;
3. 长江大学 电子信息学院, 湖北 荆州 434000
- Author(s):
-
LIU Baisen1,2, ZHANG Ye1, ZHANG Lei3
-
1. School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin 150001, China;
2. The Institute of Electrical and Information Engineering, Heilongjiang Institute of Technology, Harbin 150050, China;
3. College of Information and Communications Engineering, Harbin Engineering University, Harbin 150001, China
-
- 关键词:
-
大型舰船; 总体要素; 约束多目标; 进化算法; 优化设计
- Keywords:
-
large ship; overall elements; constrained multi-objective evolutionary algorithm; optimal design
- 分类号:
-
TP18
- DOI:
-
10.11992/tis.201605006
- 摘要:
-
针对舰船设计中存在所得方案分布性和收敛性不好等问题,首先建立以初稳性高、飞行甲板面积、横摇固有周期以及阻力为优化目标的大型舰船总体要素优化模型;其次根据大型舰船方案设计的特点,提出一种约束多目标分解进化算法;最后将提出的算法用于优化模型的求解。与目前优化性能较好的2种算法进行对比实验,实验结果表明,本文算法获得了性能更加优异的设计方案。
- Abstract:
-
In view of the fact that the distribution and convergence of the schemes are weak in ship design, this paper established an optimization model for the overall elements of large ship, which contains these optimization objectives such as the initial stability height, the area of flight deck, the natural roll period and the resistance. Then a constrained multi-objective decomposition evolutionary algorithm was presented according to the characteristics of large ship’s scheme design. Finally the proposed algorithm was used to optimize the model. The solution was compared with the two optimal algorithms. The results show that the performance of this method is more excellent.
备注/Memo
收稿日期:2016-05-09。
基金项目:国家自然科学基金项目(61471148);黑龙江省自然科学基金项目(F201322).
作者简介:刘柏森,男,1979,副教授,博士,主要研究方向为信号与信息处理;张晔,男,1960,教授,博士,主要研究方向为信号与信息处理;张磊,男,1987年生,博士,主要研究方向为智能信息处理、约束高维多目标优化。
通讯作者:刘柏森.E-mail:sped_liu@126.com
更新日期/Last Update:
1900-01-01