[1]董小圆,彭珍瑞,殷红,等.传感器优化布置的距离系数-Fisher信息准则[J].智能系统学报,2017,12(1):32-37.[doi:10.11992/tis.201604026]
DONG Xiaoyuan,PENG Zhenrui,YIN Hong,et al.Distance coefficient-Fisher information criterion for optimal sensor placement[J].CAAI Transactions on Intelligent Systems,2017,12(1):32-37.[doi:10.11992/tis.201604026]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
12
期数:
2017年第1期
页码:
32-37
栏目:
学术论文—机器感知与模式识别
出版日期:
2017-02-25
- Title:
-
Distance coefficient-Fisher information criterion for optimal sensor placement
- 作者:
-
董小圆, 彭珍瑞, 殷红, 董海棠
-
兰州交通大学 机电工程学院, 甘肃 兰州 730070
- Author(s):
-
DONG Xiaoyuan, PENG Zhenrui, YIN Hong, DONG Haitang
-
School of Mechatronic Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
-
- 关键词:
-
传感器优化布置; 损伤识别; Fisher信息矩阵; 信息冗余; 欧氏距离; 灵敏度分析; 模态分析
- Keywords:
-
optimal sensor placement; damage detection; Fisher information matrix; information redundancy; Euclidean distance; sensitivity analysis; modal analysis
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.201604026
- 摘要:
-
以损伤参数识别为目标,基于传统Fisher信息准则的传感器优化布置会出现测点局部聚集现象,导致信息冗余,不利于损伤定位。针对此问题,首先以反映信息独立程度的距离系数对候选自由度的Fisher信息矩阵进行加权修正;然后以修正后的有效信息矩阵行列式最大化为目标,采用逐步累加的方法得到基于距离系数-Fisher信息准则的传感器优化布置方案。采用该方法对一个16自由度剪切型弹簧质量模型进行传感器优化布置。结果表明,该方法能有效避免测点聚集现象,解决信息冗余问题。
- Abstract:
-
For damage parameters identification, when the traditional Fisher information criterion is used for optimal sensor placement, the measuring points are susceptible to gathering in a local sensitivity area, which results in information redundancy and this is not conducive to damage location. To avoid aggregation of the measuring points and improve the ability of the damage location, the distance coefficient, which reflects the degree of information independence, was used first to correct the Fisher information matrix, and then the measuring points were obtained by maximizing the determinant of the modified information matrix using a sequential algorithm. The method was employed to design the optimal sensor configuration for a simple 16-DOF chain mass-spring model. The results show the method can effectively avoid the aggregation of measuring points and solve the problem of information redundancy.
备注/Memo
收稿日期:2016-4-21;改回日期:。
基金项目:国家自然科学基金项目(61463028);甘肃省自然科学基金项目(1506RJZA069).
作者简介:董小圆,男,1988年生,硕士研究生,主要研究方向为传感器优化布置;彭珍瑞,男,1972年生,教授,博士生导师,主要研究方向为智能优化、测控技术。现主持国家自然科学基金项目1项、甘肃省科技支撑计划项目1项、兰州市科技计划项目1项。发表学术论文30余篇,获得实用新型专利10余件;殷红,女,1978年生,副教授,主要研究方向为智能优化和模态分析。主持甘肃省自然基金项目1项。近年来获得甘肃省教育厅教学成果奖、甘肃省高校科技进步奖等奖项。发表学术论文近20篇,编写教材5部。
通讯作者:彭珍瑞.E-mail:pzri@163.com.
更新日期/Last Update:
1900-01-01