[1]孙庆美,金聪.基于视觉注意机制和条件随机场的图像标注[J].智能系统学报,2016,11(4):442-448.[doi:10.11992/tis.201606004]
SUN Qingmei,JIN Cong.Image annotation method based on visual attention mechanism and conditional random field[J].CAAI Transactions on Intelligent Systems,2016,11(4):442-448.[doi:10.11992/tis.201606004]
点击复制
《智能系统学报》[ISSN 1673-4785/CN 23-1538/TP] 卷:
11
期数:
2016年第4期
页码:
442-448
栏目:
学术论文—机器学习
出版日期:
2016-07-25
- Title:
-
Image annotation method based on visual attention mechanism and conditional random field
- 作者:
-
孙庆美, 金聪
-
华中师范大学 计算机学院, 湖北 武汉 430079
- Author(s):
-
SUN Qingmei, JIN Cong
-
School of Computer, Central China Normal University, Wuhan 430079, China
-
- 关键词:
-
自动图像标注; 视觉注意; 词相关性; 条件随机场
- Keywords:
-
automatic image annotation; visual attention mechanism; inter-word correlation; conditional random fields
- 分类号:
-
TP391
- DOI:
-
10.11992/tis.201606004
- 摘要:
-
传统的图像标注方法对图像各个区域同等标注,忽视了人们对图像的理解方式。为此提出了基于视觉注意机制和条件随机场的图像标注方法。首先,由于人们在对图像认识的过程中,对显著区域会有较多的关注,因此通过视觉注意机制来取得图像的显著区域,用支持向量机对显著区域赋予语义标签;再利用k-NN聚类算法对非显著区域进行标注;最后,又由于显著区域的标注词与非显著区域的标注词在逻辑上存在一定的关联性,因此条件随机场模型可以根据标注词的关联性校正并确定图像的最终标注向量。在Corel5k、IAPR TC-12和ESP Game图像库上进行实验并且和其他方法进行比较,从平均查准率、平均查全率和F1的实验结果验证了本文方法的有效性。
- Abstract:
-
Traditional image annotation methods interpret all image regions equally, neglecting any understanding of the image. Therefore, an image annotation method based on the visual attention mechanism and conditional random field, called VAMCRF, is proposed. Firstly, people pay more attention to image salient regions during the process of image recognition; this can be achieved through the visual attention mechanism and the support vector machine is then used to assign semantic labels. It then labels the non-salient regions using a k-NN clustering algorithm. Finally, as the annotations of salient and non-salient regions are logically related, the ultimate label vector of the image can be corrected and determined by a conditional random field (CRF) model and inter-word correlation. From the values of average precision, average recall, and F1, the experimental results on Corel5k, IAPR TC-12, and ESP Game confirm that the proposed method is efficient compared with traditional annotation methods.
备注/Memo
收稿日期:2016-06-02。
基金项目:国家社会科学基金项目(13BTQ050).
作者简介:孙庆美,女,1989年生,硕士研究生,主要研究方向为数字图像处理;金聪,女,1960年生,教授,博士。主要研究方向为数字图像处理。
通讯作者:金聪.E-mail:jinc26@aliyun.com.
更新日期/Last Update:
1900-01-01